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Abstract—Edge cloud computing systems are widely used
to supply various computation services in Internet of Things
(IoT). An essential problem is how to efficiently allocate
task requests to various edge and cloud servers given task
requirements (e.g., response time and required memory space),
in order to minimize various costs generated in edge cloud
computing. Existing studies on task allocation usually consider
the viewpoint of provider cost such as offloading cost, uploading
cost and deployment cost. However, the viewpoint of user cost
(e.g., server fee) is rarely considered which is becoming an
important issue in the deployment of edge cloud computing sys-
tems, especially for cost sensitive users like venture companies.
In this paper, we study a dynamic task allocation problem in
edge cloud computing where both servers’ status and arriving
tasks would change along with time; the goal is to search the
task allocation policy that can minimize user cost. Specifically,
we consider a parallel processing case where a task’s workload
can be infinitely divided among the various servers; this causes
a huge solution space and makes the problem hard to solve.
Thus, we consider an approximate method from the perspective
of server coalitions rather than a single server, and propose
a dynamic coalition formation algorithm called coalitional R-
learning (CR-learning) to guide several edge servers in forming
a coalition dynamically. Simulations verify that our algorithm
can significantly reduce user cost comparing with some other
existing algorithms while shrinking the solution space.

Keywords-IoT; edge cloud computing; task allocation;
Markov decision process; reinforcement learning

I. INTRODUCTION

With the rapid development of Internet of Things (IoT),

billions or even trillions of IoT devices will be potentially

networked [1]. Since the computation capabilities of IoT

devices are always limited, they must rely on external com-

puting resources [2]. Cloud computing usually offers high

reliability given its abundant computation resources, and

provides scalable and efficient computing services. Cloud

access usually, however, incurs huge bandwidth consumption

and long delays, and so may not satisfy IoT applications

that need very low latency [3]. Edge computing supplements

cloud computing by providing cloud-like services closer to

the IoT devices. While offering several advantages such as

controllable latency and low energy consumption [4], edge

servers are not as rich in capacities such as bandwidth, pro-

cessing speed and memory size as cloud servers. Therefore,

edge cloud computing has been proposed as a solution and

is attracting a lot of interest as it balances the advantages of

edge and cloud computing [5].

In edge cloud computing, an important problem is how

to allocate tasks to the various servers to minimize various

costs such as offloading cost [4], data transfer cost [6] and

deployment cost [7] while satisfying the task requirements.

However, the works mentioned rarely consider the viewpoint

of user cost such as cloud service fee and edge server

electricity fee. User cost has become an issue of more

importance, since the cloud services offered by some cloud

vendors such as Amazon, Aliyun and Azure, usually come

with high user costs. According to a report from TechRe-

public in 2019, nearly 60% of organizations overspend their

cloud service budgets. This creates tension for users as their

cost savings were seen as the core reason for cloud adaption

across business and IT sectors [8].

In this paper, we study a dynamic task allocation problem

in edge cloud computing. Specifically, we consider a certain

mixture of heterogeneous edge and cloud servers that have

different attribute values such as computation rate, storage

resource and unit fee per second. In each step, the centralized

coordinator, which has a global view of the current status

of all servers, would confront a task request queue with an

uncertain number of tasks, and allocate the tasks to those

servers, given that each task’s workload can be distributed

among several servers. Within a certain period of several

steps, the goal is to learn an optimal task allocation policy

that can minimize the summation of costs from all servers

during the period while satisfying the constraints of both

tasks and servers. However, this triggers two major issues:

1) how to handle the dynamic characteristics of the servers

and the arrival of task requests in each step; 2) how to cope

with a huge solution space since each task’s workload can

be infinitely divided among the various servers.

To resolve the first issue, we formulate the dynamic task

allocation problem as a Markov decision process (MDP)

where all servers’ current status and arriving task requests

are represented as a state, so those dynamics can be treated

as state transitions in MDP. As for the second issue, we

introduce an approximate method to generate the solution

space from the perspective of server coalitions; we propose

a dynamic coalition formation algorithm to guide edge
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server cooperation in performing tasks. Compared to existing

studies [4]-[13], the main contributions of this paper are

summarized as follows:

• We formulate a dynamic task allocation problem in

edge cloud computing as a MDP which can handle the

dynamic features of the problem well;

• We propose a dynamic coalition formation algorithm

to guide edge server cooperation for task completion

so as to minimize user cost while reducing the solution

space;

• We run experiments that show our proposed algorithm

outperforms some other existing algorithms in reducing

user cost.

II. RELATED WORK

Task allocation to minimize various costs in edge cloud

computing has been tackled often in recent years. Tao et al.

[4] formulated an energy cost minimization problem with the

constraints of resource capacity; the cost factor they focused

on is the energy consumed by offloading tasks from mobile

devices to edge servers. Chen et al. [9] studied mobile edge

cloud computing and adopted a game theoretic approach

for minimizing offloading cost in a distributed manner. Gu

et al. [7] considered a mobile edge cloud computing case

and attempted to minimize the joint energy cost including

uploading cost, deployment cost and inter-base station com-

munication cost. They formulated the problem as a mixed

integer nonlinear program and then linearized it into mixed

integer linear programming form. Zhang et al. [10] focused

on minimizing the energy cost consumed by the system itself

and proposed cost-efficient scheduling for delay-sensitive

tasks in edge computing. However, the various energy costs

considered in these works are all from the viewpoint of

provider rather than the viewpoint of user. And also these

studies did not consider the dynamic features of edge cloud

computing.

There are also some studies that consider dynamic features

in edge cloud computing. Li and Huang [6] formulated a

dynamic process for task allocation using MDP approach

to balance the tradeoff between energy costs and Quality

of Service (QoS) requirements; the energy costs they fo-

cused on are mainly associated with sensor hub and data

transfer. Guo et al. [11] considered a dynamic continuous

time process in edge cloud computing and proposed a task

allocation policy for achieving optimal power-delay tradeoff

in the system. Although these works considered dynamic

processes in edge cloud computing, they are not associated

with user cost.

Moreover, there are some studies that consider the cost

from the viewpoint of user and also emphasize the dynamic

features in their models. Bittencourt et al. [12] introduced a

scheduling problem in hybrid clouds to minimize cloud ser-

vice fee and make briefly surveyed some of the scheduling

algorithms used in such systems. Yu et al. [13] utilized MDP

to formulate workflow scheduling to minimize execution

cost. Although these works took reducing user cost as an

optimal goal, what they focused on is how to schedule the

sequence of performing the tasks where some tasks can be

performed only after some other tasks have been formed;

these studies did not consider the strategy of allocating the

tasks on servers. However, this paper considers a dynamic

task allocation problem in edge cloud computing and takes

user cost as the optimization goal while satisfying the task

requirements.

III. PRELIMINARIES

A. Edge Cloud Computing System

We refer to the edge computing architecture in [10][14]

and extend it to the edge cloud computing system shown in

Figure 1; it consists of a centralized coordinator and several

heterogeneous edge and cloud servers. In each step, a task

queue consisting of several tasks accesses the coordinator,

then the coordinator must decide how to allocate those tasks

to different servers. We assume each task can be distributed

to several servers to be performed in parallel. Since each

server will charge a different user cost for performing the

same task, task allocation significantly impacts overall costs.

In this system, we set server electricity fee as edge server

cost and cloud service fee as cloud server cost, so both of

them are user cost components. Thus, the goal is to find

an optimal policy for allocating tasks to the servers in each

step, which can minimize user cost.

Moreover, if a server is regarded as an agent which can

observe state (e.g., server status and arriving task queue),

the dynamic task allocation process can be formulated as

MDP, a classic model to cope with discrete time decision

processes, which is described in the next part. Moreover, the

tasks whose requirements cannot be satisfied by edge servers

with limited capacities have to be offloaded to cloud servers,

which causes a higher fee than that of offloading them to

edge servers. Thus, we consider to propose a dynamic coali-

tion model based on coalition structure generation (CSG) to

make edge servers form several coalitions to cooperate to

perform those tasks where the coalitions would dynamically

change in each step to fit with each state.

B. Markov Decision Process

Markov decision process (MDP) is a traditional math-

ematical framework for modeling decision making in a

dynamic discrete time process. In MDP, an agent observes

current state s of the environment and chooses action a based

on its policy π(s, a). The environment then probabilistically

transfers to the next state s′ and the above process is

repeated. In each transition (s, a, s′), the agent obtains an

immediate reward/cost r(s, a, s′) and the agent’s goal is

to learn an optimal policy that can maximize/minimize its

accumulated rewards/costs 1
T

∑T
t=1 r(st, at, st+1) during a

period, where T is the length of the period.
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Figure 1. Edge cloud computing architecture

Specifically, MDP can be denoted as the tuple <
S,A, T , r >, where S is the set of states, A is the set

of actions, T : S × A × S → [0, 1] is the transition

function where T (s, a, s′) = Prob(s′|s, a) is the probability

of transitioning to the next state s′ ∈ S , after taking action

a ∈ A given the current state s ∈ S , r : S ×A×S → R is

the reward function.

MDP problems can be well solved via reinforcement

learning (RL) which guides the agent in learning the optimal

policies by trial-and-error; many RL algorithms have been

proposed [16].

C. Coalition Structure Generation

If there are multiple resource-limited agents, the agents

should form coalitions to aggregate their resources, which

yields more rewards for them than that without forming

coalitions. Coalition structure generation (CSG) is an effec-

tive model for studying such agent cooperation problems.

It focuses on partitioning a set of agents into mutually

disjoint coalitions so as to maximize the total reward [17].

In CSG, each coalition corresponds to a value based on a

characteristic function and the goal of CSG is to find an

optimal coalition structure that can maximize the sum of

rewards from all coalitions.

We assume a set of agents N = {1, ..., N} where several

agents can form a coalition c which is a subset of N ,

i.e., c ⊆ N ; thus the set of all possible coalitions c is

a power set of N , which is denoted as 2N . Since it is

assumed that an agent can be allocated to just one coalition,

N can be divided to several disjoint subsets, where each

division is called as a coalition structure, denoted by cs, i.e.,

cs = {c1, ..., c|cs|
∣∣ ∀i �= j, ci ∩ cj = ∅ ∧ ⋃|cs|

i=1 ci = N}.
In CSG, each coalition c corresponds to value vcha(c)
based on characteristic function vcha : 2N → R and

the goal is to search the coalition structure, cs∗, that

maximizes the sum of the values of all coalitions, i.e.,

cs∗ = argmaxcs∈PN
∑

ci∈cs vcha(ci).

Table I
NOTATIONS AND DEFINITIONS

SV The set of all servers
svi The i-th server
cri The i-th server’s computation rate
sri The i-th server’s available storage resource
srit The i-th server’s available storage resource at step t
srmax

i The i-th server’s maximum of storage resource
dti The i-th server’s delay time
uci The i-th server’s unit cost in ON status
tat The queue of arrived tasks at step t
taj The j-th task
tatj The j-th task at step t
wj The j-th task’s workload
rtj The j-th task’s required response time
rsrj The j-th task’s required storage resource

xi
j The binary variable to denote whether the j-th task is

allocated to the i-th server

xj The vector to denote the j-th task’s allocation on all
servers

x The action: a task allocation strategy
st The state at step t
srt The current available storage resource of all servers at

step t
A(s) The set of all possible actions given the state s
π(s,x) The probability of taking action x given state s
T (s,x, s′) The probability of transition to state s′ given current

state s and action x
costi(s,x, s

′) The server i’s immediate cost in transition (s,x, s′)
costSV

t The sum of all servers’ immediate costs at step t
Cost(h) The sum of all servers’ immediate costs along the

period h

IV. MODEL

In this section, we formulate a dynamic task allocation

model in an edge cloud computing system as shown in

Figure 1. Correspondingly, all the notations and definitions

are summarized in Table I.

Server: We consider an edge cloud computing system con-

sisting of n servers SV = SVe ∪ SVc = {sv1, sv2, ..., svn}
where SVe is the set of edge servers and SVc is the set

of cloud servers. Each server svi ∈ SV is denoted by

vector svi = [cri, sri, dti, uci] where cri is the computation
rate of server i (assumed to be a constant), sri is the

available storage resource of server i that is a variable

altered by pushing/popping tasks where we denote srmax
i

as the maximum of available storage resource (i.e., no task

is allocated on server i), dti is a constant to represent the

delay time when a task is offloaded to server i, uci is server

i’s unit cost when the server is in ON status (we assume the

server’s cost will be zero, if it is in OFF status).

Although, edge and cloud servers can be represented by

the same tuple, their parameter values are substantially dif-

ferent; cloud servers have significantly greater computation

resources than edge servers, while edge servers usually have

lower delay time than cloud servers.

Task: At each step, a task queue consisting of some tasks

arrives, which is denoted as ta={ta1, ta2, ..., ta|ta|} with

taj=[wj , rtj , rsrj ] where wj is task j’s workload required
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to be performed, rtj is the longest acceptable response time
of task j, and rsrj is task j’s required storage resource if

it is allocated on a server.

Dynamic Task Allocation: The dynamic characteristics

of the model are from two parts: 1) one is that the server’s

available storage resources are altered by pushing/popping

tasks; 2) the other is that, at each moment, arriving task re-

quests are uncertain. Thus, the task allocation strategy should

suit the dynamic characteristics, which can be regarded as

a discrete time dynamic decision problem. MDP, a classical

model formulating discrete time dynamic decision process,

is used to formulate the problem in this paper. First, we

introduce

st =
[
srt, tat

]
to denote state in step t: the first part srt =

[
sr1t, ..., sr|srt|t

]
includes the current available storage resource of all servers

at step t; the second part tat =
[
tat1, ..., tat|tat|

]
is the

server request queue arriving at step t;
As for state st, task allocation strategy xt that allocates

the tasks of tat to the servers in SV would be taken.

Specifically, xt can be denoted by a matrix as follows,

xt =
[
x1, ...,xj, ...,x|tat|]�,

where xj = [xj
1, ..., x

j
i , ..., x

j
|SV|] denotes task tatj ∈ tat

workload distribution among all servers sv ∈ SV and its

element xj
i ∈ [0, 1] denotes the allocated partitioning on

server svi. For instance, xj
i=0.8 means that 80% of task

tatj’s workload is allocated to server i; it satisfies

|SV|∑
i=1

xj
i = 1. (1)

Then, task allocation strategy x is regarded as an action

in MDP and all possible tasks allocation strategies in state

st can be represented by an action set as follows,

A(st) = {x1, ...,x|A(st)|}.

Then, we consider a policy function π : S×A(s)→ [0, 1] to

guide how to choose action xt from A(st) given state st ∈ S
(S is the set including all possible states); it is defined by

π(s,x) = Prob(x|s) which is the conditional probability of

choosing action x given the condition of state s.

The environment transfers to the next state st+1 upon

completion of action xt based on transition function T :
S × A(s)× S → [0, 1]; this means the environment proba-

bilistically transfers to the next state s′ depending on current

state s and action x, i.e., T (s,x, s′)=Prob(s′|s,x). As for

the transition (st,xt, st+1), we consider a corresponding

summation of costs from all servers: costSV(st,xt, st+1);
we denote it as costSV

t hereafter; it can be solved by

costSV
t =

|SV|∑
i=1

costi(st,xt, st+1),

where

costi(st,xt, st+1) =

{
uci if server i’s status in st+1 is ON,

0 otherwise.

Let us consider a certain trajectory h with T steps and

assume the timeslot between any two adjacent steps is one

second; h can be represented as follows,

h = [s1,x1, s2,x2, ..., sT ,xT , sT+1].

Then, h with T steps corresponds to a period (e.g., 10

seconds, 1minute) and the sum of the immediate costs

in the period is
∑T

t=1 cost
SV
t which is what we want to

minimize. Since, length T is given, then minimizing that cost

summation is equivalent to minimizing its average which is

defined as:

Cost(h) =
1

T

T∑
t=1

costSV
t =

1

T

T∑
t=1

|SV|∑
i=1

costi(st,xt, st+1).

(2)

In order to minimize Cost(h), we need to search for an

optimal policy π∗ that corresponds to the minimum expected

value of Cost(h), i.e.,

π∗ = arg min
π

Epπ(h)

[
Cost(h)

]
, (3)

where Epπ(h) denotes the expected value over trajectory h
drawn from pπ(h), and pπ(h) denotes the probability density

of observing trajectory h under policies π:

pπ(h) = p(s1)
T∏

t=1

π(st,xt)T (st,xt, st+1). (4)

where p(s1) is the probability of initial state.

Constraints: We have denoted task allocation x =[
x1, ...,xj, ...,x|ta|]� as an action in the above part. How-

ever, action x must satisfy both the task and server require-

ments. Specifically, task taj must be accomplished within

the required response time rtj i.e.,

rtj ≤ max
{xj

iwj

cri
+ dti

}
i∈|SV|. (5)

Obviously the total storage resource requirement of all tasks

scheduled to server svi cannot exceed the storage resource

of server svi. That is,

∀ i ∈ {1, ..., |SV|},
|ta|∑
j=1

xj
i rsrj ≤ sri. (6)

Example 1: We consider an edge cloud computing system

consisting of three edge servers and two cloud servers.

Specifically, we take RaspberryPi-2 as edge servers sv1,2
and RaspberryPi as edge server sv3 , and take Amazon EC2

h1.4xlarge as cloud servers sv4,5. We refer to published

values in determining the value of (cri, sr
max
i , dti, uci) for

each server i, see Table II (MIPS is Million Instructions Per
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Table II
EDGE AND CLOUD SERVERS IN EXAMPLE 1

server cr(MIPS) srmax(GB) dt(s) uc($/s)

sv1(RaspberryPi-2) 1538 1 0.1 3e-07
sv2(RaspberryPi-2) 1538 1 0.1 3e-07
sv3(RaspberryPi) 847 0.5 0.1 3e-07
sv4(EC2 h1.4xlarge) 5900 64 2 8e-05
sv5(EC2 h1.4xlarge) 5900 64 2 8e-05

Second).

We assume two types of tasks: type1 (9000MI, 9s, 0.1GB)
has high computation workload and high latency delay

tolerance, that can be allocated only to cloud servers (MI is

Million Instructions); type2 (1000MI, 2s, 0.1GB) has low

computation workload but low latency delay tolerance, and

can be allocated only to edge servers. Then, at each step a

task request queue ta consisting of several of the two types

of tasks would arrive for allocation.

Let us assume a simple case where the length T of

trajectory h is 2. Then, at step t=1, the available storage

resource of all servers is 0 and with the arrival of two

tasks ta1 = type1 and ta2 = type2 we have state

s1=[[0, 0, 0, 0, 0], [ta1, ta2]]. We can solve the action space

A(s1) and choose an action from it. If ta1 is allocated to

sv3 and ta2 is allocated to sv1, the resulting cost costSV
1 =

3e-07+8e-05=8.03e-05 in step t=1. At step t=2, suppose that

only one task ta1 = type1 arrives, and the state transits to

s2=[[0.1, 0, 0, 0.1, 0], [ta1]]. As task1 can be allocated to sv4
or sv5, we have costSV

2 =16.03e-05 if it is allocated to sv5 or

costSV
2 =8.03e-05 if it is allocated to sv4. The corresponding

average costs, Cost(h), are also different. Thus, the goal is

to search for a policy that can minimize Cost(h).

V. ALGORITHM

As stated in the above section, as for a state s, infinite

possible actions x ∈ A(s) exist since each task can be

performed by infinitely divided among the servers. Although

some studies simplify this problem by assuming that each

task can just be allocated to one server [10][18], these

approaches might not attain a satisfying solution. This is

because some tasks with high workload cannot be performed

by just one edge server and they have to be offloaded to

the cloud servers, whose charges are usually much higher

than those of edge servers. Thus, we consider to generate

the action space from the perspective of server coalitions:

several servers can form a coalition to be as a joint server,

then a task allocated to the joint server would be divided

proportionally according to each member’s computation rate.

First, we take the situation in [10][18] as a benchmark

where each task can be allocated only to one server and

apply, R-learning algorithm, a classical RL algorithm to

solve it. Then, we combine CSG with R-learning algorithm

to propose a dynamic coalition formation algorithm called

coalitional R-learning algorithm. Although some other RL

algorithms for average reward MDPs can also be utilized,

it is not the core of this paper. What we focus on in this

paper is to propose a general framework for combining both

coalition structure generation and RL algorithms to guide

agents how to form coalitions dynamically.

A. R-learning Algorithm

Since the dynamic task allocation problem is cast in

average reward MDP form where the goal is to learn an

optimal policy π that can minimize the average reward

defined as Eq. (2).

Average reward MDPs can be solved by many RL algo-

rithms, e.g., R-learning [19], SMART [20], RVI Q-learning

[21]. In this paper, we apply R-learning to solve it. First, we

define average reward ρπ under a policy π when T → ∞
as follows,

ρπ = lim
T→∞

1

T

T∑
t=1

costSV
t .

A state-action value function is normally used to learn

the optimal policy; it evaluates the quality that results from

taking particular actions in certain states. The state-action

value function Qπ : S ×A(s)→ R is defined by

Qπ(s,x) =

∞∑
t=1

Epπ(h)

[
costSV

t − ρπ | s1 = s,x1 = x
]
,

where “|s1 = s,x1 = x” means the initial state and the

action are fixed on state s and x, respectively. Then, both

Qπ(s,x) and ρπ can be updated according to the R-learning

algorithm as follows.

Qπ(st,xt)← Qπ(st,xt)+

α
[
costSV

t − ρπt +min
x′

Qπ(st+1,x
′)−Qπ(st,xt)

]
,

ρπt ← ρπt +

β
[
costSV

t − ρπt +min
x′

Qπ(st+1,x
′)−Qπ(st,xt)

]
,

where α, β ∈ (0, 1] are learning rates. Given state st, action

x with the minimum of Qπ(st,x) would be taken, i.e.,

xt = arg min
x

Qπ(st,x).

B. Coalitional R-learning Algorithm

In the above part, in order to avoid creating an infinite

action space, the problem was simplified by assuming each

task can be allocated to just one server, which might cause

higher cost than necessary, as those tasks that cannot be

performed by just one edge server must be offloaded to cloud

servers. Thus, we consider to distribute the tasks from the

perspective of server coalitions: first, let some edge servers

form several coalitions; then, each task would be allocated

to just one coalition or one cloud server; finally, the task

allocated to one coalition would be proportionally distributed

among the coalition members.
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First, we refer to the framework of CSG to deal with how

to form coalitions among edge servers svi ∈ SVe where one

coalition consisting of some edge servers can be regarded

as a subset of SVe, i.e., c ⊆ SVe. Then, the power set 2SVe

of SVe includes all possible joint edge servers c. Since it is

assumed that an agent can be allocated to just one coalition,

SVe can be divided to several disjoint subsets, where each

division is called a coalition structure, denoted by cs, i.e.,

cs = {c1, ..., c|cs|
∣∣ ∀i �= j, ci ∩ cj = ∅ ∧

|cs|⋃
i=1

ci = SVe}.

We let Pcs denote a set of all possible coalition structures,

i.e., Pcs = {cs1, ..., cs|Pcs|}. Then, each coalition of edge

servers and each cloud server would be regarded as an entity

and each task is assumed to be allocated to just one entity;

this corresponds to a new set SVcs as follows,

SVcs = {c1, ..., c|cs|} ∪ SVc.

Then, in the state s, each SVcs corresponds to an action

space under coalition structure cs defined as Acs(s). Consid-

ering all possible cs ∈ PSVe

, we define a joint action space

as Aall(s) = Acs1(s) ∪ ... ∪ Acs|Pcs|(s). Then, in state s,

the coordinator would choose action x from Aall(s). After

the task is allocated to a coalition, the task is proportionally

divided among the members of the coalition. Although, there

are different methods for dividing tasks among a coalition,

in this paper we consider a deterministic distributed strategy:

task partitioning among the members (edge servers) depends

on available storage resource, which means that a server with

greater available storage resource would have a greater share

of the tasks.
Thus, we combine CSG with R-learning to propose coali-

tional R-learning (CR-learning) algorithm; it can guide edge

servers to form coalitions dynamically while learning the

optimal policy, which is shown as Algorithm 1. Compared

with R-learning, a task which cannot be performed by just

one edge server might be offloaded to a coalition of edge

servers rather than a cloud server, which corresponds to

lower user cost. Thus, the proposed algorithm can cope with

the issues of dynamic features and huge solution space well.

VI. EXPERIMENT

In this section, we conduct the performance evaluation of

CR-learning algorithm for solving the cost efficient problem

in edge cloud computing. We set R-learning algorithm and

an approximate linear programming (LP) algorithm [10] as

benchmarks to show the effectiveness and improvement of

our proposed algorithm. Although the goal of the approx-

imate LP is also to minimize the cost of edge computing

systems, unlike the algorithms based on MDP, it just solves

an approximate optimal solution deterministically at each

state ignoring the influence to the state transition.
Moreover, we investigate how the different tasks’ pa-

rameters would affect the effectiveness of the algorithms.

Algorithm 1 Coalitional R-learning

1: Initialize: the set SVcs of coalition structures given the

set SV of servers, the values of ρπ and all Q(s,x) to

zero

2: for episode m=1, M do
3: Set the initial state

4: for step t =1, T do
5: Generate a task request queue tat based on the

given distribution and observe all servers’ current

storage resource srt
6: Based on the state st = [srt, tat], solve the action

space Acsj (st) for each coalition structure csj
7: Solve joint action space Aall(st) and select an

action xt ∈ Aall(st) according to the policy π:

xt = arg min
x

Q(st,x)

8: Execute action xt and observe immediate cost

costSV
t and new state st+1

9: Update the value of Q(st,xt) and ρπt as follows

Q(st,xt)← Q(st,xt)+
σ
[
costSV

t − ρπt +minx′ Q(st+1,x
′)−Q(st,xt)

]
ρπt ← ρπt +
β
[
costSV

t − ρπt +minx′ Q(st+1,x
′)−Q(st,xt)

]
10: end for
11: end for

Specifically, we take an edge computing system given as

Example 1, which composes of three edge servers and two

cloud servers. Without loss of generality, the value of tasks’

parameters are all different, which includes number of tasks

in arriving task queue, task workload and task storage.

A. Performance Evaluation

We first check the performance of results obtained by

our CR-learning algorithm by comparing with R-learning

and the approximate LP method. In order to simulate the

uncertain number |tat| of tasks in each arriving task queue,

we assume |tat| is identically determined by a probability

distribution. In this case, we use a uniform distribution

among (0,maxnumber) where maxnumber is the maximum

number of tasks, i.e., |tat| ∼ unif(0,maxnumber).
Then, we denote each period as an episode during the

learning process and set the length of one episode as T=10.

Since, the number of arriving tasks in each step definitively

influences user cost, it is hard to directly compare the costs

of two episodes with different number of arriving tasks.

Thus, we take 200 episodes as one round and take the

average of user costs in one round as the result. We set

the learning rates α and β as 0.9, and use the two types

of tasks given in Example 1 (maxnumber=10). We run the

following simulations for 10,000 episodes which correspond

to 50 rounds. The results shown in Figure 2 indicate the

approximate LP method’s performance would not improve

during the iterations because it considers a deterministic
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Figure 2. Reduce user cost in edge cloud computing via coalitional R-
learning algorithm, R-learning algorithm and approximate LP method

optimal policy at each state without learning. Moreover, the

deterministic optimal policy of the approximate LP method

does not consider dynamic feature, thus its performance

would be inferior to R-learning which can learn how to

cope with the dynamic features. The results also indicate

our proposed CR-learning algorithm can decrease user cost

by around 30% relative to R-learning, because some tasks

that cannot be performed by a single server can be performed

by an edge coalition, rather than being offloaded to cloud

servers.

B. Parameter Analysis

Next, we analyze the effect of parameters on CR-learning

algorithm performance comparing with the R-learning algo-

rithm. The parameters include number of tasks in arriving

task queue, task workload and task storage.

1) The Effect of Task Number: In this experiment, we

evaluate the performance of our CR-learning algorithm with

different maximum number maxnumber of tasks in a task

queue. We keep the task workload as 9000MI and set

task storage as 0.2GB, then we change the value of the

maxnumber from 2 to 10 in steps of 2. We run 10,000

episodes and take the average of the last 1000 episodes as

the learning results.

As shown in Figure 3, the results confirm that our algo-

rithm offers lower user cost than R-learning under different

maximum number of tasks in a task queue. This advantage

increases with the increase of number of tasks to be assigned.

This is because as more tasks arrive, the edge coalition

can accept the increase in task numbers without offloading

them to the cloud servers, which would be the expensive

alternative.

2) The Effect of Task Workload: In this experiment, we

evaluate the performance of our CR-learning algorithm with

different task workloads. We keep the maximum of task

number maxnumber at 10 and change task workload from

8000MI to 20000MI in steps of 4000MI; We run 10,000

episodes and take the average of the last 1000 episodes as

Figure 3. The effect of task number

the learning results.

As shown in Figure 4, the results confirm that our algorithm

Figure 4. The effect of task workload

offers lower user cost than R-learning under different task

workloads. However, this kind of advantage decreases with

the increase of task workload. This is because more tasks

have to be offloaded to cloud servers when the total workload

exceeds the limits of edge coalitions can perform, which

invokes more cloud servers and thus increases the cost.
3) The Effect of Task Storage: In this experiment, we

evaluate the performance of our CR-learning algorithm with

different storage of tasks. We keep the maximum of task

number maxnumber at 10 and set the task workload to

9000MI, then we set task required storage as 1MB, 10MB,

100MB, 1GB, respectively. We run 10,000 episodes and take

the average of the last 1000 episodes as the learning results.

As shown in Figure 5, we can conclude our algorithm can

offer lower user cost than R-learning under different storage

of tasks. This advantage increases with the storage resource

requirement. This is because the edge server coalitions have

enough storage resources to handle the tasks with high

storage resource requirements, which can only be allocated

to cloud servers in R-learning.

To summarize the above experiments, our algorithm can
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Figure 5. The effect of task storage

guide the edge servers to form coalitions to perform tasks

that cannot be processed by just one edge server, without

offloading the tasks to the cloud servers. Moreover, the

effectiveness of our proposed CR-learning algorithm in

reducing user cost has been verified by experiments with

various parameter settings.

VII. CONCLUSION

This paper studied a dynamic task allocation problem

of edge cloud computing, with the target of minimizing

user cost. A dynamic coalition formation algorithm called

coalitional R-learning is proposed to guide edge server

cooperation so as to minimize user cost while reducing the

solution space. We validated our approach by comparing it

with other classical algorithms using parameters taken from

published information of actual devices. The results showed

our approach achieves significantly lower user cost than

other algorithms. We plan to conduct deeper researches like

computational complexity analysis and intend to examine the

use of some state-of-art reinforcement learning algorithms to

enhance the proposal’s effectiveness.
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