
Situated Sensor Composition for Event-based System

Junta Koyama
Department of Social Informatics

Kyoto University
Kyoto, Japan

koyama@ai.soc.i.kyoto-u.ac.jp

Yohei Murakami
Unit of Design,

Kyoto University
Kyoto, Japan

yohei@i.kyoto-u.ac.jp

Donghui Lin
Department of Social Informatics

Kyoto University
Kyoto, Japan

lindh@i.kyoto-u.ac.jp

Abstract��With the development of IoT and the linking of

sensors to the cloud, the demand for event-driven service
invocation continues to increase. Moreover, as sensors will be
wrapped as Web services, sensor service composition is
required in order to detect complex events cost effectively. As
the observed environment targeted here changes continuously,
iterated sensor service composition will be required to handle
all situations. In this research, we first formalize sensor service
composition as the constraint-based optimization problem
(COP). Moreover, we introduce temporal constraints in the
detection of the temporal relationships of complex events and
thus realize enhanced sensor service composition.

Keywords- Internet of Things (IoT), Sensor Services,
Service Composition

I.� INTRODUCTION
Recently, with the development of Internet of Things

(IoT), demand is rising for event-driven service invocation
where the detection of an event by processing sensor outputs
triggers the invocation of Web services on the cloud such as
systems that detect and respond to anomalies in factories [1].
If the observed environment is fixed, such as a factory, we
can realize service invocation by tightly coupling sensors to
the cloud. However, loose coupling is required when the
observed environment is mobile such as a vehicle. In this
situation, sensors will be accessed/utilized by services and
sensor services [7] are used to detect atomic events and thus
complex events which consist of atomic events linked by
AND/OR logical operators. If the observed environment
moves continuously, sensor service composition must be
iterated to support each situation because the sensor services
available and the target complex events change over time.
Moreover, we can avoid the cascading failure among several
sensor services by repetitively composing them [2].

In the Internet of Services (IoS) domain, two approaches
to service composition, satisfying the complex demands of
users, exist: vertical service composition and horizontal
service composition. The former creates workflows, fully
integrated service processes. The latter, on the other hand,
selects and links appropriate service instances from a set of
services (service cluster) so as to satisfy functional
requirements by using nonfunctional requirements such as
Quality of Service (QoS) [3]. Each sensor service type can
be several service instances and horizontal service
composition for sensor services is seen as increasingly
important because each instance has different nonfunctional

requirements such as attributes or specifications. However,
sensor services are different from conventional Web services.
Service clusters cannot be defined from just functional
requirements consisting of input/output as we need to
consider spatio-temporal constraints on which sensor
services are able to detect target events. Moreover, sensor
services require service composition in Complex Event
Processing (CEP) engine because they are composed based
on not workflows but ECA rules [4]. Sensor services should
be formed by logical operators including temporal relations
in ECA rules of complex events, not rigid control structures
common in workflows. In this research, we propose site-
specific sensor service composition for detecting complex
events by considering these characteristics and applying an
existing horizontal service composition method that uses
constraint-based optimization.

This paper is organized as follows. Section 2 introduces
an example to explain the problem addressed by this research.
In Section 3, we describe our proposed method and we apply
our method to a real world scenario in Section 4. Also we
implement our proposed method in Section 5. Finally, in
Section 6, we introduce some works related to event-driven
Service-Oriented Architecture (SOA), sensor services and
sensor selection, and composition and conclude this paper in
this Section 7.

II.� MOTIVATING EXAMPLE
This research takes the self-driving car as its motivating

example. The self-driving car will have various in-vehicle
sensors, however, they are not sufficient to detect long-range
events and we need to enhance service reliability by using
sensors embedded in the environment. Here, we consider the
scenario that a car is to stop if another vehicle approaches
along a street that is 30 meters in front of the current location.
The target event is "another vehicle approaches from the left
side" and it can be represented as the complex event IF
Sound >= 120 db DURING Movement == True THEN
Stop(self) by using two atomic events Sound and Movement.
This ECA rule represents the complex event becoming true
when atomic event Sound is more than 120 decibels during
atomic event Movement is True and the two atomic events
can be detected by Mic sensor service and Motion sensor
service. We assume that the system can judge the situation
by only using Sound and Movement events. Mic sensor
service is assumed that detects Sound events and record its
sound at the same time. In this case, the recorded sound data
will be sent to the sound recognition service on cloud for
judging whether the event is really true or not after Mic

2017 IEEE 14th International Conference on Services Computing

2474-2473/17 $31.00 © 2017 IEEE

DOI 10.1109/SCC.2017.34

212

sensor service finishes detecting the event. In the
environment, there are several sensor service instances and
each will have different specifications (Figure 1). We assume
that the delay in detecting events is given as one of the
specifications. This delay means the maximum temporal
delay from when the event happens to when the sensor
service detects it. In this situation, the problem p

Figure 1. Example of Complex Event Detection for Self-Driving Car

we investigate in this research is which combination of
sensor services should be used to realize the complex event
targeted. If we consider the services in isolation, the most
appropriate combination appears to be motion3 and mic1.
However, the complex event includes DURING as a
temporal relation. Therefore, the target complex event may
not be detected if Movement detection does not coincide with
Sound detection. Since detection faults can cause critical
problems in applications such as the self-driving car, false
negatives must be avoided. Given the structure of the
complex event, the Motion sensor service should have
smaller delay than the Mic sensor service, so the
combination of motion1 and mic2, which satisfies this
requirement, is the most appropriate. Thus, sensor services
selection must satisfy the structure of the complex event.

III.� CONSTRAINT-BASED SENSOR COMPOSITION
The conventional approach to the Web service

composition problem is horizontal service composition with
constraint-based optimization. COP is the problem of
deciding the assignment of values that maximizes or
minimizes a given objective function while satisfying given
constraints. Hassine et al. defined abstract Web services
(components of workflows) as variables, concrete Web
services (including input and output of each abstract Web
service) as domains of variables, and formalized the Web
service composition problem as the COP problem of
selecting concrete Web services that maximize the objective
function [13]. Hard constraints and soft constraints are set
based on the user’s QoS preferences. Moreover, hard
constraints are defined to execute appropriate processing
flows for each control structure of workflows because Web
services are composed based on workflows. Here the
objective function is a function that maximizes the user’s
preferences and minimize penalties on soft constraints.

In this paper, we apply horizontal service composition to
the sensor service composition problem of detecting complex
events. In 4.1, we formalize the sensor service composition
problem as COP and extend it for detecting complex events
with temporal relations in 4.2.

A.� Definition of the Problem and Events
As we mention in Section 1, Sensor service composition

will be repeated as the detected environment moves
continuously and thus desired sensor services and target
events will also change. Therefore, the sensor service
composition problem is defined as the sequence of k COPi
(1≤i≤K) (Eq. 1).

(Eq. 1)

COPi has CEi that consists of N atomic events, AEj, linked by
AND/OR logical operators (Eq. 2).

 (Eq. 2)

Each atomic event is defined in absolute or relative time and
space (Figure 2). Absolute time and space is time and space
defined with absolute geographical coordinates, absolute
time and space values, and event range (Eq. 3).

{typei, coordinationi, timei, rangei} (Eq. 3)
{typei, distancei, azimuthi, timei, rangei} (Eq. 4)

Relative time and space is time and space defined by
distance and azimuth from the user, relative time from the
current time and event range (Eq. 4).

Figure 2. Absolute Time and Space and Relative Time and Space

B. Formalization of Sensor Service Composition Problem
Next, we define COPi. We define the sensor service

types that satisfy functional requirements for detecting
atomic event AEj as variables Xj and its set as X (Eq. 5). Then
the domain of each variables is defined with the set of sensor
service instances Di being able to detect atomic event AEj in
terms of time and space and its set as D (Eq. 6).

X = {X1, ..., Xn} (Eq. 5)

D = {D1, ..., Dn} (Eq. 6)

213

The definition of domain Di of each variable differs with the
definition of target atomic events. The definition for absolute
time and space is shown in Eq. 7 and the definition for
relative time and space is shown in Eq. 8.

Di = {sij(sij .Location, sij .AvailableT ime, sij .Coverage)|
(sij .Location ⊆ AEi.range OR

sij .Coverage ∩AEi.range > 0) AND

AEi.time ⊆ sij .AvailableT ime}

(Eq. 7)

Di = {sij(sij .Distance, sij .Azimuth, sij .AvailableT ime, sij .Coverage)|
AEi.distance−AEi.range ≤ sij .Distance± sij .Coverage

≤ AEi.distance+AEi.range AND

sij .Azimuth ⊆ AEi.azimuth AND

AEi.time ⊆ sij .AvailableT ime}

(Eq. 8)

TABLE I. � FOUR CONSTRAINT TYPES

Spatial
Constraints

Location of Sensor Service
Coverage (Sensing Area) of Sensor Service
View Angle of Sensor Service
Direction of View Angle of Sensor Service

Temporal
Constraints

Delay of Sensor Service
Response Time of Sensor Service
Available Time of Sensor Service

Environmental
Constraints

Working Temperature of Sensor Service
Working Humidity of Sensor Service

QoS Constraints Cost of Sensor Service
Reputation of Sensor Service
Data Range of Sensor Service
Accuracy of Sensor Service

Constraint are either hard constraints (CH) or soft constraints
(CS). Hard constraints are mainly given by service providers
while soft constraints are given by the user (Eq. 9).

C = CS ∪ CH (Eq. 9)

This papers assigns constraints into four types; spatial
constraints, temporal constraints, environmental constraints
and QoS constraints (Table 1).

Figure 3. Maximum Delay in Event Detection, Delay

As shown in Section 2, the problem of the target complex
event not being detected can occur due to mismatch in the
detection delay of events and failure to evaluate temporal
relations in complex events. However, if event detection is
critical, detection faults are not allowed. Therefore, we
consider how to minimize the detection delay, Delay, as a
key goal target. Delay represents how much the event
detection of an atomic event is offset from its occurrence
(Figure 3). Although we cannot identify when an event

happens in reality, it can be calculated from Frequency
which represents the sampling interval and Accuracy which
represents the sensor service precision as follows (Eq. 10).

Delay =
Frequency

Accuracy
(Eq. 10)

In this research, we assume that Delay has been already
specified along with other QoS attributes. We consider the
minimization of this Delay and the summation of penalties
on soft constraints. We also define aggregation functions of
Delay for each logical operator because sensor services
should be composed based on logical operators in complex
events. In the case of AND operator, all sensor services
should fire. The worst case is when atomic events happen in
ascending order of Delay of the sensor service detecting
them and the detection of atomic events is not overlapped
(Figure 4). In this research, we assume this worst case and
the target is to optimize the summation of Delay. In the case
of OR operator, either of atomic events happens and either of
sensor services fires. The worst case is when the sensor
service with the biggest Delay fires, therefore, the target to
be optimized is Delay of the sensor service with the biggest
Delay. Even if other sensor service fires, its Delay is smaller
than the biggest Delay. We define an objective function that
takes account of the aggregation function of Delay and the
summation of penalties on soft constraints (Eq. 11).

Figure 4. The Best Case and The Worst Case of Delay in AND relation

f(combi) = arg min
combi∈Cmb

(

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
sij∈combi

Delaysij (AND)

max
sij∈combi

Delaysij (OR)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑

CSi∈CS

ρCSi
)

(Eq. 11)

C.� Extension of Formalization for Complex Events with
Temporal Relations

In addition to AND/OR logical operators, we consider
temporal operators that represent which and when atomic
events happens as operators in complex events. Therefore,
we extend the COP formalization to realize sensor service
composition for detecting complex events with temporal
relations. Here, we take five of Allen's temporal operators
[12] as temporal relations, see Figure 5 and Table 2.

214

As an example, in the BEFORE relation between two
atomic events AE1 and AE2, AE1 happens at first and then
AE2 happens. Therefore, if Delay of the sensor service
detecting AE1 is greater than that one of the sensor service
detecting AE2, the detection of AE1 will be delayed and the
temporal relation is possible to be reversed (Figure 6).
Therefore, Delay of sensor service type detecting atomic
event AE1 should set to be shorter.

Figure 5. Allen’s temporal operators

Also, we set the objective function with different
aggregation function of Delay for each temporal relation.
Accordingly, temporal orders of each atomic event can be
considered. For example, in BEFORE, MEET and
OVERLAP relation, atomic event AE1 happens and then
atomic event AE2 happens. The end of complex event
detection is after AE2 is detected and Delay of sensor service
detecting AE1 is included in Delay of sensor service
detecting AE2. Therefore, Delay of sensor service detecting
the atomic event happening last is set as the target to be
optimized (Eq. 12). When the ECA rule of a complex event

Figure 6. Delay in BEFORE relation

f(combi) = arg min
combi∈Cmb

(

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Delays1j∈combi (before, meet, overlaps)

Delaysnj∈combi (during)

∑
sij∈combi

Delaysij (equal)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+
∑

CSi∈CS

ρCSi
)

(Eq. 12)

has three or more atomic events and two or more temporal
relations between them, temporal constraints and
aggregation function are compiled in two ways. The first is
when all temporal relations are the same between atomic
events such as AE1 BEFORE AE2 BEFORE ... BEFORE AEn.

In this case, temporal constraints and aggregation function
corresponding to the temporal relation can be applied. The
second type is when some temporal relations are different
between atomic events such as AE1 BEFORE AE2
BEFORE ... DURING AEn. In this case, atomic events on
the rule form a time line from the head of the rule to the tail
of the rule. Therefore, we obtain an appropriate temporal
constraint by compiling the rule backwards and rewrite the
rule for atomic events that have priority. For example, if we
compile the rule AE1 BEFORE AE2 DURING AE2 into AE1
BEFORE AE3 backward, the sub rule AE2 DURING AE3
corresponds to the aggregation function that triggers
minimization of the delay of the latter sensor service.
Therefore, the priority in this rule will be given to AE3; we
can rewrite AE2 DURING AE3 simply as AE3 and obtain the
rule AE1 BEFORE AE3 so that temporal constraints and
aggregation function of the BEFORE relation can be applied.

TABLE II. � TEMPORAL CONSTRAINTS FOR EACH TEMPORAL RELATION

AE1 BEFORE AE2 Delay(Sensor Service for AE1) < Delay
(Sensor Service B for AE2)

AE1 DURING AE2 Delay(Sensor Service for AE2) ≤ Delay
(Sensor Service for AE1)

AE1 MEETS AE2 Delay(Sensor Service A for AE1) ≤ Delay
(Sensor Service for AE2)

AE1 OVERLAPS AE2 Delay(Sensor Service for AE1) ≤ Delay
(Sensor Service for AE2)

AE1 EQUALS AE2 Delay(Sensor Service for AE1) ≤ Delay
(Sensor Service for AE2) (as CS)
Delay(Sensor Service for AE2) ≤ Delay
(Sensor Service for AE1) (as CS)

30m

Complex Event 1
as COP1

Complex Event 2
as COP2

Figure 7. Real World Scenario

IV.� REAL WORLD SCENARIO

In this section, we present an example using a concrete
real world scenario and illustrate our proposed method by
solving the problem (introduced in Section 2). First of all, we
set the following scenario.

At noon, a vehicle equipped with self-driving system
needs to start driving and turn right at the street 30 meters
ahead. The vehicle needs to detect an event whether any
other vehicle is coming from the left side and stop the vehicle
for that. And the vehicle turns right if there is no vehicle and

215

TABLE III. � SENSOR SERVICE INSTANCES FOR EACH SENSOR SERVICE TYPE IN THE SCENARIO

 Distance
(m)

Azimuth
(°)

Coverage
(m)

View
Angle

(°)

Direction
(°)

Delay
(ns)

Response
Time
(ns)

Min
Available

Time

Max
Available

Time

Cost
($/h)

Reputation Accuracy
(%)

motion1 48 326 8 55 225 0.2 0.5 100000 150000 0.4 4 87
motion2 45 335 9 65 180 0.35 0.6 0 120000 0.3 3 85
motion3 42 345 8 50 202 0.3 0.5 90000 170000 0.6 3 80
motion4 20 30 5 60 337 0.2 0.6 80000 150000 0.3 3 80
motion5 40 15 5 55 180 0.3 0.4 110000 180000 0.5 2 75

mic1 19 329 5 - - 0.2 0.6 100000 170000 0.3 4 70
mic2 32 305 5 - - 0.3 0.7 110000 190000 0.4 2 80
mic3 22 320 5 - - 0.1 0.5 90000 170000 0.5 3 75

pedestrian on the left. Here, we do not consider competitive
relationships between other vehicles, that is, other vehicles
which is the target of detection for this vehicle does not try to
detect this vehicle in this scenario. We assume that all
actions of other vehicles are given priority. In this case, this
composite service can be formed by combining a motion
sensor service and mic sensor service for recording and
detecting events, and a Web service that classifies the kind of
recorded sounds. This service gives the data to the Web
service if the event is detected and from the result returned
judges whether it is vehicle or not.

In this scenario, the following two complex events are
targets for detection (Figure 7).

1.� Pause if any other vehicle is coming from the left
street.

2.� Turn right after confirming that there is no vehicle or
pedestrian on the right street and no vehicle is coming
from the left side.

These two complex events are continuous in terms of time
and space, however, the problems for one sequence with two
COPs; COP1 for complex event 1 and COP2 for complex
event 2 because domains and constraints of the two COPs
are different. COP1 is described by the following ECA rule.

CARSOUND1 � 120 db DURING LEFTMOVEMENT1 ==

True THEN Stop(self)

This rule represents the complex event that only becomes
true when atomic event CARSOUND1 is more than
120decibels while atomic event LEFTMOVEMENT1 is true.
The definitions of each atomic event involve relative time
and space attributes (Table 4). The event type of atomic
event LEFTMOVEMENT1 is MOVEMENT and Motion
sensor service can detect it. CARSOUND1 is SOUND and
Mic sensor service can detect it.

CE = {LEFTMOVEMENT1, CARSOUND1}
X = {Motion1, Mic1}

Domains of each sensor service type based on the spatio-
temporal attributes of atomic events are as follows. In this

case, each atomic event is defined in relative time and space
and the domains are generated according to (Eq. 13).

Motion1 = {motion1, motion2, motion3}
Mic1 = {mic1, mic2, mic3}
Twelve attributes for Motion1 and nine attributes that are
same attributes without two attributes, ViewAngle and
Direction for Mic1 , are set. The sensor service instances are
represented in Table 3.

First, hard constraints set by the service provider and
domains that satisfy them are described as follows.

CH1: Motion1.ViewAngle > 50
CH2: Motion1.Delay ≤ 0.6ns
CH3: Mic1.Delay ≤ 0.6ns
CH4: Motion1.ResponseTime ≤ 0.8ns
CH5: Mic1.ResponseTime ≤ 0.8ns
CH6: Motion1.Reputation ≥ 2
CH7: Mic1.Reputation ≥ 2

Motion1 = {motion1, motion2}
Mic1 = {mic1, mic2}

Constraints CH8, CS1 and CS2 set by the users and hard
constraint CH9 defined for the DURING relation are as
follows.

CH8: Motion1.Cost + Mic1.Cost < $1/h
CH9: Motion1.Delay ≤ Mic1.Delay
CS1: Motion1.Cost + Mic1.Cost < $0.8/h
CS2: 0.5(Motion1.Reputation) + 0.5(Mic1.Reputation) ≥ 3

The first constraint, CH8, is hard and the combinations that
satisfy it are all combinations with four instances as follows.

Cmb = {{motion1, mic2}, {motion1, mic2},
 {motion2, mic1}, {motion2, mic2}}

Among the combinations combi�Cmb that satisfy CH9;
comb2 and comb4 are as follows with satisfaction status on
soft constraints ρ1i and ρ2i.

comb1 = {motion1, mic1}, Delay=0.2, ρ11=0, ρ21=0
comb2 = {motion1, mic2}, Delay=0.2, ρ12=1, ρ22=0

216

Next, we set the objective function for DURING relation as
the minimization of Delay of Motion1 and penalties on soft
constraints. The best combination is comb1 = {motion1, mic1}.
� Second, COP2 can be represented as the following ECA
rule that is a complex event with three atomic events.

RIGHTMOVEMENT1 == False BEFORE

LEFTMOVEMENT2 == FALSE DURING CARSOUND2 ≤
60 db THEN TurnRight(self)

In this case, RIGHTMOVEMENT1 represents the movement
in the right side of the street. The other two are equivalent to
LEFTMOVEMENT1 and CARSOUND1 in COP1. The rule
represents the complex event that only becomes true when
atomic event CARSOUND2 exceeds 60 decibels while atomic
event LEFTMOVEMENT2 is true. The definitions of atomic
events involve relative time and space values (Table 4).
RIGHTMOVEMENT1 is MOVEMENT and can be detected
by Motion sensor service type.

CE = {LEFTMOVEMENT2, CARSOUND2,
RIGHTMOVEMENT1}
X = {Motion2, Mic2, Motion3}

The domains that satisfy each condition are shown below.

TABLE IV. � ATOMIC EVENTS

 LEFTMOVEMENT1,
CARSOUND1

RIGHTMOVEMENT1

distance 32m 32m
azimuth 303°-349° 15°-30°

time Within 5 seconds from
the current time

Within 5 seconds
from the current time

range 8m 8m

Motion3 = {motion4, motion5}

Hard constraints set by the service provider are the same as
those in COP1. Some constraints CH12, CS1 and CS2 set by the
user are as follows. In the rule, we have two temporal
relations; BEFORE and DURING. By using the rule
compiling approach shown in Section 3, we can obtain the
rewritten rule and we can set constraints CH13 for BEFORE
relation.

CH12: Motion2.Cost + Mic2.Cost + Motion3.Cost < $1.3/h
CH13: Motion3.Delay < Mic2.Delay
CS1: 0.3(Motion2.Accuracy)+0.3(Mic2.Accuracy)
 +0.3(Motion3.Accuracy) ≥ 80
CS2: Motion2.Reputation ≥ 4

The first constraint, CH12 is a hard constraint and
combinations that satisfy this constraint are generated.

Cmb = {{motion1, mic1, motion4}, {motion1, mic1, motion5},

{motion1, mic2, motion4}, {motion2, mic1, motion4},
{motion2, mic1, motion5}, {motion2, mic2, motion4},
{motion2, mic2, motion5}}

Among the combinations combi � Cmb that satisfy
constraints CH13, comb3 and comb5 are shown below.

comb3 = {motion1, mic2, motion4}, Delay=0.2, ρ13=0, ρ23=0
comb5 = {motion2, mic2, motion4}, Delay=0.2, ρ15=0, ρ25=1

Finally, the objective function for BEFORE relation is set as
minimization of Delay of Motion1 and penalties on soft
constraints. The best combination is comb3 = {motion1,
motion2, motion4}.

V.� IMPLEMENTATION
We implemented our proposed method by using the

SAT-based constraint solver, Sugar [13]. The sensor service
composition problem studied here can be described as an
object-oriented expression that selects the most appropriate
sensor service instances for each sensor service type as
classes.

We first implemented an encoder that encodes the
problem into Sugar syntax because most constraint solvers
do not support object-oriented expressions. First, the encoder
defines each QoS attribute of each sensor service type as a
variable in Sugar syntax. Second, the combination of QoS
values is fixed as instances by setting the support points
(Figure 8). A support point is a combination of values which
the solver (Sugar) can only take as solutions. Accordingly,

Figure 8. Definition of variables and Instances as support points

we can solve the problem, originally described using object-
oriented expressions, on Sugar. For example, green sensor
service type has three attributes; Cost, Reputation and
Accuracy in Figure 9. Each attribute of green sensor service
type is defined as a variable with domain values (x11 with 3
and 4, x12 with 2 and 3, and x13 with 50 and 80). In order to
fix each instance, support points are defined. For example,
values 3, 2 and 50 of variables x11, x12 and x13 represent the
instance s11. Therefore, we set 3, 2 and 50 as the support
point (specifically, set as (relation r1 3 (supports (3 2 50)))
and (r1 x11 x12 x13) in Sugar syntax). Consequently,
combinations which are not defined as support points cannot
be selected as solutions. Setting a hard constraint for each

217

QoS is achieved by setting it as a constraint for each variable.
In Figure 9, for example, if we set the hard constraint of Cost

Figure 9. Definition of variables and Instances as support points

of green sensor service type is more than 3, we need to
describe it as (> x11 3) in Sugar. Here each instance is fixed
as support points and the only instance whose cost is more
than 3 is s12 (QoS value; 4, 3, 80). As a result, s12 is selected
as the instance satisfying the hard constraint. On the other
hand, a soft constraint can set as a domain of penalty values
{0,1}, a constraint, and a clause that connects the constraint
to the domain of penalty values. In Figure 9, for example, if
we set a soft constraint of Reputation of blue sensor service
type must be more than or equal to 3, we need to describe it
as (int p1 0 1) and (imp (= p1 0) (>= x22 3)) in Sugar. The
satisfaction status of each instance is that s21 does not satisfy
and s22 satisfies. Soft constraints are considered in the
optimization process shown in Section 4. As a first step, we
can describe hard and soft constraints as lambda equations
by using sensor service types, indexes, the name of attributes
in Python syntax, such as lambda i: motion1[i].delay <= 0.6.
The encoder then encodes the lambda equations into Sugar
Syntax with variable names.

By solving the problem, the appropriate combination is
selected and we confirm sensor service composition has been
realized by the proposed method. It takes .251 seconds to
encode the problem and .600 seconds to solve the problem
(.900 seconds in total). The execution time increases with the
scale of problem. The complex event we show in Section 4 is
composed with three atomic events at most, however,
complex events will be bigger with more atomic events in
general such as more detailed events. As the number of
atomic events in a complex event increases, the number of
sensor service types for detecting them will be needed and it
leads to the exponential growth in the number of sensor
service instances and the number of QoS attributes.
Therefore, the scale of problem can be regarded as
determined by the number of sensor service instances and the
number of QoS attributes. The former can be reduced by our
definition of domains proposed in this paper, however,
improvement of efficiency in recalculation is a critical issue
because attributes differ with the sensor service and its
increase is inevitable.

So far in COP, dynamic COP which improves efficiency
when recalculation is required by reusing the solution of
previous problems [14] or generating robust solutions toward
the future problem based on probabilities [15] and we
consider they are applicable to sensor service composition
problem. However, it has not become clear how big problem

needs dynamic COP and detailed simulation about changes
in the scale of problem is required for future work.

VI.� RELATED WORKS

A.� Event-Driven SOA
As part of SOA research, event-driven SOA which

introduces mechanisms into event-driven architecture
(EDA) has been investigated. Spiess et al. proposed the
integrated architecture, which abstracts interfaces with Web
service standards and focuses on event-based messaging in
order to enable access to devices in real world by using the
service-oriented approach in enterprise services [5].

For realizing event-driven SOA, services needs to
handle event. Juric proposed the extended model for
managing EDA in SOA to yield event-driven service
orchestration and services as event producers with event
sources producing events or event consumers with event
sinks receiving events [6]. Therefore, such service has event
sources and/or sinks for responding to events in addition to
regular service interface. Potocnik et al. proposed a model
based on Complex Event Aware (CEA) services which
correspond to complex events for realizing Complex Event
Processing (CEP) which is not supported in existing SOA
platforms [7]. Sensor service, the target of this research, is
also an event service because it responds to events.

B.� Sensor Service
In SOA, sensor service was proposed to realize the

decoupling of sensors by wrapping sensor functionalities as
services such as Sensor Data as a Service or Sensing as a
Service (SenaaS). Perera et al proposed a model for using
sensing as a service to address the issues of technology,
economy and social aspects in the domain of Smart Cities
[8]. Also, Kyusakov et al. proposed improvements in the
efficiency of deploying sensor nodes as Web services
accessed by users via SOAP without any middleware [9].

Sensor service is often mentioned in the context of
accessing sensors from the cloud or data accumulation. We,
on the other hand, focus on sensor service as an input
interface of Event-based System (EBS) and achieving real
time utilization. Alam et al. proposed a sensor virtualization
framework for realizing event-driven SOA in IoT domain
by using the concept of SenaaS [10]. Therefore, a key
research issue is how to select and compose sensors
virtualized as services for real time utilization.

C.� Sensor Selection and Composition
The combinational problem of sensors has been

investigated for sensor selection and sensor composition. In
horizontal service composition for Web services, selection
and composition are almost synonymous because both
presuppose input/output inclusion relation of services and
several service instances should follow the workflow.
However, in the case of sensor services, the workflow is not
always given and therefore sensor service selection and
composition do not have the same meaning. That is, sensor

218

selection subsumes sensor composition.
Sensor selection is the problem of deciding the set of

sensors that satisfy functional requirements. Perera et al. took
sensors to be services and proposed a model and algorithms
of context-aware sensor search that could realize similar
functionalities from a huge numbers of sensor service
candidates by selection and ranking [11]. Beyond location
information they employ comprehensive information
including QoS of sensor services as context information.

On the other hand, sensor composition is, unlike sensor
selection, the problem of deciding the set of sensors that
have the desired relationships. Gao et al. considered sensor
services as an event service in event-driven SOA and
proposed a QoS-aware composition method of event services
according to the rules of complex events for detecting
complex events, not single event [12]. They consider rules of
complex events in the same way as workflows in Web
services and realize event service composition in accordance
to rules by defining QoS aggregation schemata and utility
functions for each logical operator in complex event rules
with optimization by a genetic algorithm (GA).

VII.� CONCLUSION
In this research, we introduced horizontal service

composition by using COP which has been used for Web
service composition and proposed a position-sensitive sensor
service composition method. First we defined the domain
with spatio-temporal requirements of sensor services toward
atomic events and formalized the problem as COP by setting
different aggregation functions for each logical operator in
complex events. Moreover, we extended sensor service
composition to include the detection of complex events with
temporal relations by introducing temporal constraints. Also
we realized our proposed method by implementation on
Sugar and clarified the necessity of dynamic COP when the
scale of problem will be bigger. Future work includes
identifying how big a problem needs to be to trigger the use
of dynamic COP by conducting detailed simulations of
problems with varying scales.

ACKNOWLEDGMENT
This research is supported by the Leading Graduates

Schools Program, "Collaborative Graduate Program in
Design” by the Ministry of Education, Culture, Sports,
Science and Technology, Japan. Also, this research was
partially supported by a Grant-in-Aid for Young Scientists
(A) (17H04706, 2017-2020) and a Grant-in-Aid for
Scientific Research (A) (17H00759, 2017-2020) from Japan
Society for the Promotion of Science (JSPS).

REFERENCES
[1]� D. Miorandi, S. Sicari, F. D. Pellegrini, I. Chlamtac, Internet

of things: Vision, applications and research challenges., Ad
Hoc Network, Vol. 10, No. 7, pp. 1497-1516, 2012.

[2]� K. M. Lhaksmana, Y. Murakami, T. Ishida, Analysis of
Large-Scale Service Network Tolerance to Cascading
Failure., IEEE IoT Journal, Vol. 3, No. 6, pp.1159-1170,
2016.

[3]� L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.

Kalagnanam, H. Chang, QoS-Aware Middleware for Web
Services Composition., IEEE Transactions on Software
Engineering, Vol. 30, No. 5, pp. 311–327, 2004.

[4]� M. Otani, T. Ishida, Y. Murakami, T. Nakaguchi, Event
Management for Simultaneous Actions in the Internet of
Things., IEEE 3rd World Forum on Internet of Things (WF-
IoT), pp.64-69, 2016.

[5]� P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker,
L. M. S. Souza, V. Trifa, SOA-Based Integration of the
Internet of Things in Enterprise Services., IEEE International
Conference on Web Services (ICWS), 2009.

[6]� M. B. Juric, WSDL and BPEL extensions for Event Driven
Architecture., Information and Software Technology, Vol. 52,
No. 10, pp. 1023–1043, 2010.

[7]� M. Potocnik, M. B. Juric, Towards Complex Event Aware
Services as Part of SOA., IEEE Transactions on Services
Computing, Vol. 7, No. 3, pp. 486–500, 2014.

[8]� C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos,
Sensing as a service model for smart cities supported by
Internet of Things., Wiley Transactions on Emergin
Telecommunications Technologies., Vol. 25, Issue. 1, pp. 81-
93, 2014.

[9]� R. Kyusakov, J. Eliasson, J. Delsing, J. Deventer, J.
Gustafsson, Integration of Wireless Sensor and Actuator
Nodes with IT Infrastructure Using Service-Oriented
Architecture., IEEE Transactions on Industrial
Informationcs., Vol. 9, Issue. 1, pp. 43-51, 2013.

[10]�S. Alam, M. M. R. Chowdhury, J. Noll, SenaaS: An Event-
driven Sensor Virtualization Approach for Internet of Things
Cloud., IEEE International Conference on Networked
Embedded Systems for Enterprise Applications (NESEA),
2010.

[11]�C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen,
D. Georgakopoulos, Sensor Search Techniques for Sensing
as a Service Architecture for the Internet of Things., IEEE
Sensors Journal., Vol. 14, Issue. 2, pp. 406-420, 2014.

[12]�F. Gao, E. Curry, M. I. Ali, S. Bhiri, A. Mileo, QoS-Aware
Complex Event Service Composition and Optimization
Using Genetic Algorithms., Service-Oriented Computing:
12th International Conference, ICSOC 2014, Paris, France,
November 3-6, 2014. Proceedings, Springer, pp. 386–393,
2014.

[13]�A. B. Hassine, S. Matsubara, T. Ishida, A Constraint-Based
Approach to Horizontal Web Service Composition.,
Proceedings of the 5th International Conference on The
Semantic Web, pp. 130–143, 2006.

[14]�J. F. Allen, Maintaining knowledge about temporal intervals.,
Communications of the ACM, Vol. 26, No. 11, pp. 832–843,
1983.

[15]�N. Tamura, N, A. Taga, S. Kitagawa, M. Banbara, Compiling
Finite Linear CSP into SAT., Constraints, Vol. 14, No. 2, pp.
254–272, 2009.

[16]�S. Minton, M. D. Johnston, A. B. Philips, P. Laird,
Minimizing conflicts: a heuristic repair method for constraint
satisfaction and scheduling problems., Artificial Intelligence,
Vol. 58, No. 1, pp. 161–205, 1992.

[17]�H. Fargier, J. Lang, T. Schiex, Mixed constraint satisfaction:
A framework for decision problems under incomplete
knowledge., Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pp. 175–180, 1996.

219

