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Abstract��With the development of IoT and the linking of 

sensors to the cloud, the demand for event-driven service 
invocation continues to increase. Moreover, as sensors will be 
wrapped as Web services, sensor service composition is 
required in order to detect complex events cost effectively. As 
the observed environment targeted here changes continuously, 
iterated sensor service composition will be required to handle 
all situations. In this research, we first formalize sensor service 
composition as the constraint-based optimization problem 
(COP). Moreover, we introduce temporal constraints in the 
detection of the temporal relationships of complex events and 
thus realize enhanced sensor service composition.  

Keywords- Internet of Things (IoT), Sensor Services, 
Service Composition  

I.�  INTRODUCTION 
Recently, with the development of Internet of Things 

(IoT), demand is rising for event-driven service invocation 
where the detection of an event by processing sensor outputs 
triggers the invocation of Web services on the cloud such as 
systems that detect and respond to anomalies in factories [1]. 
If the observed environment is fixed, such as a factory, we 
can realize service invocation by tightly coupling sensors to 
the cloud. However, loose coupling is required when the 
observed environment is mobile such as a vehicle. In this 
situation, sensors will be accessed/utilized by services and 
sensor services [7] are used to detect atomic events and thus 
complex events which consist of atomic events linked by 
AND/OR logical operators. If the observed environment 
moves continuously, sensor service composition must be 
iterated to support each situation because the sensor services 
available and the target complex events change over time. 
Moreover, we can avoid the cascading failure among several 
sensor services by repetitively composing them [2]. 

In the Internet of Services (IoS) domain, two approaches 
to service composition, satisfying the complex demands of 
users, exist: vertical service composition and horizontal 
service composition. The former creates workflows, fully 
integrated service processes. The latter, on the other hand, 
selects and links appropriate service instances from a set of 
services (service cluster) so as to satisfy functional 
requirements by using nonfunctional requirements such as 
Quality of Service (QoS) [3]. Each sensor service type can 
be several service instances and horizontal service 
composition for sensor services is seen as increasingly 
important because each instance has different nonfunctional 

requirements such as attributes or specifications. However, 
sensor services are different from conventional Web services. 
Service clusters cannot be defined from just functional 
requirements consisting of input/output as we need to 
consider spatio-temporal constraints on which sensor 
services are able to detect target events. Moreover, sensor 
services require service composition in Complex Event 
Processing (CEP) engine because they are composed based 
on not workflows but ECA rules [4]. Sensor services should 
be formed by logical operators including temporal relations 
in ECA rules of complex events, not rigid control structures 
common in workflows. In this research, we propose site-
specific sensor service composition for detecting complex 
events by considering these characteristics and applying an 
existing horizontal service composition method that uses 
constraint-based optimization. 

This paper is organized as follows. Section 2 introduces 
an example to explain the problem addressed by this research. 
In Section 3, we describe our proposed method and we apply 
our method to a real world scenario in Section 4. Also we 
implement our proposed method in Section 5. Finally, in 
Section 6, we introduce some works related to event-driven 
Service-Oriented Architecture (SOA), sensor services and 
sensor selection, and composition and conclude this paper in 
this Section 7. 

II.� MOTIVATING EXAMPLE 
This research takes the self-driving car as its motivating 

example. The self-driving car will have various in-vehicle 
sensors, however, they are not sufficient to detect long-range 
events and we need to enhance service reliability by using 
sensors embedded in the environment. Here, we consider the 
scenario that a car is to stop if another vehicle approaches 
along a street that is 30 meters in front of the current location. 
The target event is "another vehicle approaches from the left 
side" and it can be represented as the complex event IF 
Sound >= 120 db DURING Movement == True THEN 
Stop(self) by using two atomic events Sound and Movement. 
This ECA rule represents the complex event becoming true 
when atomic event Sound is more than 120 decibels during 
atomic event Movement is True and the two atomic events 
can be detected by Mic sensor service and Motion sensor 
service. We assume that the system can judge the situation 
by only using Sound and Movement events. Mic sensor 
service is assumed that detects Sound events and record its 
sound at the same time. In this case, the recorded sound data 
will be sent to the sound recognition service on cloud for 
judging whether the event is really true or not after Mic 
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sensor service finishes detecting the event. In the 
environment, there are several sensor service instances and 
each will have different specifications (Figure 1). We assume 
that the delay in detecting events is given as one of the 
specifications. This delay means the maximum temporal 
delay from when the event happens to when the sensor 
service detects it. In this situation, the problem  p

 
Figure 1. Example of Complex Event Detection for Self-Driving Car 
 

we investigate in this research is which combination of 
sensor services should be used to realize the complex event 
targeted. If we consider the services in isolation, the most 
appropriate combination appears to be motion3 and mic1. 
However, the complex event includes DURING as a 
temporal relation. Therefore, the target complex event may 
not be detected if Movement detection does not coincide with 
Sound detection. Since detection faults can cause critical 
problems in applications such as the self-driving car, false 
negatives must be avoided. Given the structure of the 
complex event, the Motion sensor service should have 
smaller delay than the Mic sensor service, so the 
combination of motion1 and mic2, which satisfies this 
requirement, is the most appropriate. Thus, sensor services 
selection must satisfy the structure of the complex event. 

III.� CONSTRAINT-BASED SENSOR COMPOSITION 
The conventional approach to the Web service 

composition problem is horizontal service composition with 
constraint-based optimization. COP is the problem of 
deciding the assignment of values that maximizes or 
minimizes a given objective function while satisfying given 
constraints. Hassine et al. defined abstract Web services 
(components of workflows) as variables, concrete Web 
services (including input and output of each abstract Web 
service) as domains of variables, and formalized the Web 
service composition problem as the COP problem of 
selecting concrete Web services that maximize the objective 
function [13]. Hard constraints and soft constraints are set 
based on the user’s QoS preferences. Moreover, hard 
constraints are defined to execute appropriate processing 
flows for each control structure of workflows because Web 
services are composed based on workflows. Here the 
objective function is a function that maximizes the user’s 
preferences and minimize penalties on soft constraints.  

In this paper, we apply horizontal service composition to 
the sensor service composition problem of detecting complex 
events. In 4.1, we formalize the sensor service composition 
problem as COP and extend it for detecting complex events 
with temporal relations in 4.2. 

A.� Definition of the Problem and Events 
As we mention in Section 1, Sensor service composition 

will be repeated as the detected environment moves 
continuously and thus desired sensor services and target 
events will also change. Therefore, the sensor service 
composition problem is defined as the sequence of k COPi 
(1≤i≤K) (Eq. 1).  
 

(Eq. 1) 
 
COPi has CEi that consists of N atomic events, AEj, linked by 
AND/OR logical operators (Eq. 2). 
 

 (Eq. 2) 
 
Each atomic event is defined in absolute or relative time and 
space (Figure 2). Absolute time and space is time and space 
defined with absolute geographical coordinates, absolute 
time and space values, and event range (Eq. 3). 
 

{typei, coordinationi, timei, rangei} (Eq. 3) 
{typei, distancei, azimuthi, timei, rangei} (Eq. 4) 

 
Relative time and space is time and space defined by 
distance and azimuth from the user, relative time from the 
current time and event range (Eq. 4). 
 

 
 

Figure 2. Absolute Time and Space and Relative Time and Space 

B. Formalization of Sensor Service Composition Problem
Next, we define COPi. We define the sensor service 

types that satisfy functional requirements for detecting 
atomic event AEj as variables Xj and its set as X (Eq. 5). Then 
the domain of each variables is defined with the set of sensor 
service instances Di being able to detect atomic event AEj in 
terms of time and space and its set as D (Eq. 6).  
 

X = {X1, ..., Xn} (Eq. 5) 

D = {D1, ..., Dn} (Eq. 6) 
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The definition of domain Di of each variable differs with the 
definition of target atomic events. The definition for absolute 
time and space is shown in Eq. 7 and the definition for 
relative time and space is shown in Eq. 8.  
 

Di = {sij(sij .Location, sij .AvailableT ime, sij .Coverage)|
(sij .Location ⊆ AEi.range OR

sij .Coverage ∩AEi.range > 0) AND

AEi.time ⊆ sij .AvailableT ime} 
 

 
 
(Eq. 7) 
 
 

Di = {sij(sij .Distance, sij .Azimuth, sij .AvailableT ime, sij .Coverage)|
AEi.distance−AEi.range ≤ sij .Distance± sij .Coverage

≤ AEi.distance+AEi.range AND

sij .Azimuth ⊆ AEi.azimuth AND

AEi.time ⊆ sij .AvailableT ime}

 
 
(Eq. 8) 

TABLE I. � FOUR CONSTRAINT TYPES 

Spatial 
Constraints 

Location of Sensor Service 
Coverage (Sensing Area) of Sensor Service 
View Angle of Sensor Service 
Direction of View Angle of Sensor Service 

Temporal 
Constraints 

Delay of Sensor Service 
Response Time of Sensor Service 
Available Time of Sensor Service 

Environmental 
Constraints 

Working Temperature of Sensor Service 
Working Humidity of Sensor Service 

QoS Constraints Cost of Sensor Service 
Reputation of Sensor Service 
Data Range of Sensor Service 
Accuracy of Sensor Service 

Constraint are either hard constraints (CH) or soft constraints 
(CS). Hard constraints are mainly given by service providers 
while soft constraints are given by the user (Eq. 9).  
 

C = CS ∪ CH (Eq. 9) 

This papers assigns constraints into four types; spatial 
constraints, temporal constraints, environmental constraints 
and QoS constraints (Table 1).  

 
Figure 3. Maximum Delay in Event Detection, Delay 

 
As shown in Section 2, the problem of the target complex 
event not being detected can occur due to mismatch in the 
detection delay of events and failure to evaluate temporal 
relations in complex events. However, if event detection is 
critical, detection faults are not allowed. Therefore, we 
consider how to minimize the detection delay, Delay, as a 
key goal target. Delay represents how much the event 
detection of an atomic event is offset from its occurrence 
(Figure 3). Although we cannot identify when an event 

happens in reality, it can be calculated from Frequency 
which represents the sampling interval and Accuracy which 
represents the sensor service precision as follows (Eq. 10). 
 

Delay =
Frequency

Accuracy  
(Eq. 10) 

 
In this research, we assume that Delay has been already 
specified along with other QoS attributes. We consider the 
minimization of this Delay and the summation of penalties 
on soft constraints. We also define aggregation functions of 
Delay for each logical operator because sensor services 
should be composed based on logical operators in complex 
events. In the case of AND operator, all sensor services 
should fire. The worst case is when atomic events happen in 
ascending order of Delay of the sensor service detecting 
them and the detection of atomic events is not overlapped 
(Figure 4). In this research, we assume this worst case and 
the target is to optimize the summation of Delay. In the case 
of OR operator, either of atomic events happens and either of 
sensor services fires. The worst case is when the sensor 
service with the biggest Delay fires, therefore, the target to 
be optimized is Delay of the sensor service with the biggest 
Delay. Even if other sensor service fires, its Delay is smaller 
than the biggest Delay. We define an objective function that 
takes account of the aggregation function of Delay and the 
summation of penalties on soft constraints (Eq. 11). 
 

 
Figure 4. The Best Case and The Worst Case of Delay in AND relation

 
 

f(combi) = arg min
combi∈Cmb

(

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
sij∈combi

Delaysij (AND)

max
sij∈combi

Delaysij (OR)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑

CSi∈CS

ρCSi
)

 
 

 
(Eq. 11) 
 

C.� Extension of Formalization for Complex Events with 
Temporal Relations 

In addition to AND/OR logical operators, we consider 
temporal operators that represent which and when atomic 
events happens as operators in complex events. Therefore, 
we extend the COP formalization to realize sensor service 
composition for detecting complex events with temporal 
relations. Here, we take five of Allen's temporal operators 
[12] as temporal relations, see Figure 5 and Table 2.  
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As an example, in the BEFORE relation between two 
atomic events AE1 and AE2, AE1 happens at first and then 
AE2 happens. Therefore, if Delay of the sensor service 
detecting AE1 is greater than that one of the sensor service 
detecting AE2, the detection of AE1 will be delayed and the 
temporal relation is possible to be reversed (Figure 6). 
Therefore, Delay of sensor service type detecting atomic 
event AE1 should set to be shorter.  

 
Figure 5. Allen’s temporal operators 

Also, we set the objective function with different 
aggregation function of Delay for each temporal relation. 
Accordingly, temporal orders of each atomic event can be 
considered. For example, in BEFORE, MEET and 
OVERLAP relation, atomic event AE1 happens and then 
atomic event AE2 happens. The end of complex event 
detection is after AE2 is detected and Delay of sensor service 
detecting AE1 is included in Delay of sensor service 
detecting AE2. Therefore, Delay of sensor service detecting 
the atomic event happening last is set as the target to be 
optimized (Eq. 12). When the ECA rule of a complex event 

 

 
 

Figure 6. Delay in BEFORE relation 

f(combi) = arg min
combi∈Cmb

(

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Delays1j∈combi (before, meet, overlaps)

Delaysnj∈combi (during)

∑
sij∈combi

Delaysij (equal)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+
∑

CSi∈CS

ρCSi
)

 

 
(Eq. 12) 
 

 
has three or more atomic events and two or more temporal 
relations between them, temporal constraints and 
aggregation function are compiled in two ways. The first is 
when all temporal relations are the same between atomic 
events such as AE1 BEFORE AE2 BEFORE ... BEFORE AEn. 

In this case, temporal constraints and aggregation function 
corresponding to the temporal relation can be applied. The 
second type is when some temporal relations are different 
between atomic events such as AE1 BEFORE AE2 
BEFORE ... DURING AEn. In this case, atomic events on 
the rule form a time line from the head of the rule to the tail 
of the rule. Therefore, we obtain an appropriate temporal 
constraint by compiling the rule backwards and rewrite the 
rule for atomic events that have priority. For example, if we 
compile the rule AE1 BEFORE AE2 DURING AE2 into AE1 
BEFORE AE3 backward, the sub rule AE2 DURING AE3 
corresponds to the aggregation function that triggers 
minimization of the delay of the latter sensor service. 
Therefore, the priority in this rule will be given to AE3; we 
can rewrite AE2 DURING AE3 simply as AE3 and obtain the 
rule AE1 BEFORE AE3 so that temporal constraints and 
aggregation function of the BEFORE relation can be applied. 
 

TABLE II. � TEMPORAL CONSTRAINTS FOR EACH TEMPORAL RELATION 

AE1 BEFORE AE2  Delay(Sensor Service for AE1) < Delay 
(Sensor Service B for AE2) 

AE1 DURING AE2  Delay(Sensor Service for AE2) ≤ Delay 
(Sensor Service for AE1) 

AE1 MEETS AE2  Delay(Sensor Service A for AE1) ≤ Delay 
(Sensor Service for AE2) 

AE1 OVERLAPS AE2  Delay(Sensor Service for AE1) ≤ Delay 
(Sensor Service for AE2) 

AE1 EQUALS AE2  Delay(Sensor Service for AE1) ≤ Delay 
(Sensor Service for AE2) (as CS) 
Delay(Sensor Service for AE2) ≤ Delay 
(Sensor Service for AE1) (as CS) 

30m

Complex Event 1 
as COP1

Complex Event 2 
as COP2

 
Figure 7. Real World Scenario 

 

IV.� REAL WORLD SCENARIO

In this section, we present an example using a concrete 
real world scenario and illustrate our proposed method by 
solving the problem (introduced in Section 2). First of all, we 
set the following scenario. 
 

At noon, a vehicle equipped with self-driving system 
needs to start driving and turn right at the street 30 meters 
ahead. The vehicle needs to detect an event whether any 
other vehicle is coming from the left side and stop the vehicle 
for that. And the vehicle turns right if there is no vehicle and 
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TABLE III. � SENSOR SERVICE INSTANCES FOR EACH SENSOR SERVICE TYPE IN THE SCENARIO 

 Distance 
(m) 

Azimuth 
(°) 

Coverage 
(m) 

View 
Angle 

(°) 

Direction 
(°) 

Delay 
(ns) 

Response 
Time 
(ns) 

Min 
Available 

Time 

Max 
Available 

Time 

Cost 
($/h) 

Reputation Accuracy 
(%) 

motion1 48 326 8 55 225 0.2 0.5 100000 150000 0.4 4 87 
motion2 45 335 9 65 180 0.35 0.6 0 120000 0.3 3 85 
motion3 42 345 8 50 202 0.3 0.5 90000 170000 0.6 3 80 
motion4 20 30 5 60 337 0.2 0.6 80000 150000 0.3 3 80 
motion5 40 15 5 55 180 0.3 0.4 110000 180000 0.5 2 75 

mic1 19 329 5 - - 0.2 0.6 100000 170000 0.3 4 70 
mic2 32 305 5 - - 0.3 0.7 110000 190000 0.4 2 80 
mic3 22 320 5 - - 0.1 0.5 90000 170000 0.5 3 75 

pedestrian on the left. Here, we do not consider competitive 
relationships between other vehicles, that is, other vehicles 
which is the target of detection for this vehicle does not try to 
detect this vehicle in this scenario. We assume that all 
actions of other vehicles are given priority. In this case, this 
composite service can be formed by combining a motion 
sensor service and mic sensor service for recording and 
detecting events, and a Web service that classifies the kind of 
recorded sounds. This service gives the data to the Web 
service if the event is detected and from the result returned 
judges whether it is vehicle or not. 
 

In this scenario, the following two complex events are 
targets for detection (Figure 7).  
 

1.� Pause if any other vehicle is coming from the left 
street. 

2.� Turn right after confirming that there is no vehicle or 
pedestrian on the right street and no vehicle is coming 
from the left side. 

 
These two complex events are continuous in terms of time 
and space, however, the problems for one sequence with two 
COPs; COP1 for complex event 1 and COP2 for complex 
event 2 because domains and constraints of the two COPs 
are different. COP1 is described by the following ECA rule. 
 
CARSOUND1 � 120 db DURING LEFTMOVEMENT1 == 

True THEN Stop(self) 
 
This rule represents the complex event that only becomes 
true when atomic event CARSOUND1 is more than 
120decibels while atomic event LEFTMOVEMENT1 is true. 
The definitions of each atomic event involve relative time 
and space attributes (Table 4). The event type of atomic 
event LEFTMOVEMENT1 is MOVEMENT and Motion 
sensor service can detect it. CARSOUND1 is SOUND and 
Mic sensor service can detect it.  
 
CE = {LEFTMOVEMENT1, CARSOUND1} 
X = {Motion1, Mic1} 
 
Domains of each sensor service type based on the spatio-
temporal attributes of atomic events are as follows. In this 

case, each atomic event is defined in relative time and space 
and the domains are generated according to (Eq. 13).  
 
Motion1 = {motion1, motion2, motion3} 
Mic1 = {mic1, mic2, mic3} 
Twelve attributes for Motion1 and nine attributes that are 
same attributes without two attributes, ViewAngle and 
Direction for Mic1 , are set. The sensor service instances are 
represented in Table 3. 

First, hard constraints set by the service provider and 
domains that satisfy them are described as follows. 
 
CH1: Motion1.ViewAngle > 50 
CH2: Motion1.Delay ≤ 0.6ns 
CH3: Mic1.Delay ≤ 0.6ns 
CH4: Motion1.ResponseTime ≤ 0.8ns 
CH5: Mic1.ResponseTime ≤ 0.8ns 
CH6: Motion1.Reputation ≥ 2 
CH7: Mic1.Reputation ≥ 2 
 
Motion1 = {motion1, motion2} 
Mic1 = {mic1, mic2} 
 
Constraints CH8, CS1 and CS2 set by the users and hard 
constraint CH9 defined for the DURING relation are as 
follows.  
 
CH8: Motion1.Cost + Mic1.Cost < $1/h 
CH9: Motion1.Delay ≤ Mic1.Delay 
CS1: Motion1.Cost + Mic1.Cost < $0.8/h 
CS2: 0.5(Motion1.Reputation) + 0.5(Mic1.Reputation) ≥ 3 
 
The first constraint, CH8, is hard and the combinations that 
satisfy it are all combinations with four instances as follows. 
 
Cmb = {{motion1, mic2}, {motion1, mic2}, 
 {motion2, mic1}, {motion2, mic2}} 
 
Among the combinations combi�Cmb that satisfy CH9; 
comb2 and comb4 are as follows with satisfaction status on 
soft constraints ρ1i and ρ2i. 
 
comb1 = {motion1, mic1}, Delay=0.2, ρ11=0, ρ21=0 
comb2 = {motion1, mic2}, Delay=0.2, ρ12=1, ρ22=0 
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Next, we set the objective function for DURING relation as 
the minimization of Delay of Motion1 and penalties on soft 
constraints. The best combination is comb1 = {motion1, mic1}. 
� Second, COP2 can be represented as the following ECA 
rule that is a complex event with three atomic events. 

 
RIGHTMOVEMENT1 == False BEFORE 

LEFTMOVEMENT2 == FALSE DURING CARSOUND2 ≤ 
60 db THEN TurnRight(self) 

 
In this case, RIGHTMOVEMENT1 represents the movement 
in the right side of the street. The other two are equivalent to 
LEFTMOVEMENT1 and CARSOUND1 in COP1. The rule 
represents the complex event that only becomes true when 
atomic event CARSOUND2 exceeds 60 decibels while atomic 
event LEFTMOVEMENT2 is true. The definitions of atomic 
events involve relative time and space values (Table 4). 
RIGHTMOVEMENT1 is MOVEMENT and can be detected 
by Motion sensor service type. 

 
CE = {LEFTMOVEMENT2, CARSOUND2, 
RIGHTMOVEMENT1}  
X = {Motion2, Mic2, Motion3} 

 
The domains that satisfy each condition are shown below. 

TABLE IV. � ATOMIC EVENTS 

 LEFTMOVEMENT1, 
CARSOUND1 

RIGHTMOVEMENT1 

distance 32m 32m 
azimuth 303°-349° 15°-30° 

time Within 5 seconds from 
the current time 

Within 5 seconds 
from the current time 

range 8m 8m 

Motion3 = {motion4, motion5} 
 
Hard constraints set by the service provider are the same as 
those in COP1. Some constraints CH12, CS1 and CS2 set by the 
user are as follows. In the rule, we have two temporal 
relations; BEFORE and DURING. By using the rule 
compiling approach shown in Section 3, we can obtain the 
rewritten rule and we can set constraints CH13 for BEFORE 
relation. 

 
CH12: Motion2.Cost + Mic2.Cost + Motion3.Cost < $1.3/h 
CH13: Motion3.Delay < Mic2.Delay 
CS1: 0.3(Motion2.Accuracy)+0.3(Mic2.Accuracy)  
        +0.3(Motion3.Accuracy)  ≥ 80 
CS2: Motion2.Reputation ≥ 4 

 
The first constraint, CH12 is a hard constraint and 
combinations that satisfy this constraint are generated. 

 
Cmb = {{motion1, mic1, motion4}, {motion1, mic1, motion5}, 

{motion1, mic2, motion4}, {motion2, mic1, motion4}, 
{motion2, mic1, motion5}, {motion2, mic2, motion4}, 
{motion2, mic2, motion5}}  

Among the combinations combi � Cmb that satisfy 
constraints CH13, comb3 and comb5 are shown below. 

 
comb3 = {motion1, mic2, motion4}, Delay=0.2, ρ13=0, ρ23=0 
comb5 = {motion2, mic2, motion4}, Delay=0.2, ρ15=0, ρ25=1 
 
Finally, the objective function for BEFORE relation is set as 
minimization of Delay of Motion1 and penalties on soft 
constraints. The best combination is comb3 = {motion1, 
motion2, motion4}. 

V.� IMPLEMENTATION 
We implemented our proposed method by using the 

SAT-based constraint solver, Sugar [13]. The sensor service 
composition problem studied here can be described as an 
object-oriented expression that selects the most appropriate 
sensor service instances for each sensor service type as 
classes.  

We first implemented an encoder that encodes the 
problem into Sugar syntax because most constraint solvers 
do not support object-oriented expressions. First, the encoder 
defines each QoS attribute of each sensor service type as a 
variable in Sugar syntax. Second, the combination of QoS 
values is fixed as instances by setting the support points 
(Figure 8). A support point is a combination of values which 
the solver (Sugar) can only take as solutions. Accordingly,  

 
 

Figure 8. Definition of variables and Instances as support points 
 
we can solve the problem, originally described using object-
oriented expressions, on Sugar. For example, green sensor 
service type has three attributes; Cost, Reputation and 
Accuracy in Figure 9. Each attribute of green sensor service 
type is defined as a variable with domain values (x11 with 3 
and 4, x12 with 2 and 3, and x13 with 50 and 80). In order to 
fix each instance, support points are defined. For example, 
values 3, 2 and 50 of variables x11, x12 and x13 represent the 
instance s11. Therefore, we set 3, 2 and 50 as the support 
point (specifically, set as (relation r1 3 (supports (3 2 50))) 
and (r1 x11 x12 x13) in Sugar syntax). Consequently, 
combinations which are not defined as support points cannot 
be selected as solutions. Setting a hard constraint for each 
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QoS is achieved by setting it as a constraint for each variable.  
In Figure 9, for example, if we set the hard constraint of Cost 

 
Figure 9. Definition of variables and Instances as support points 

of green sensor service type is more than 3, we need to 
describe it as (> x11 3) in Sugar. Here each instance is fixed 
as support points and the only instance whose cost is more 
than 3 is s12 (QoS value; 4, 3, 80). As a result, s12 is selected 
as the instance satisfying the hard constraint. On the other 
hand, a soft constraint can set as a domain of penalty values 
{0,1}, a constraint, and a clause that connects the constraint 
to the domain of penalty values.  In Figure 9, for example, if 
we set a soft constraint of Reputation of blue sensor service 
type must be more than or equal to 3, we need to describe it 
as (int p1 0 1) and (imp (= p1 0) (>= x22 3)) in Sugar. The 
satisfaction status of each instance is that s21 does not satisfy 
and s22 satisfies. Soft constraints are considered in the 
optimization process shown in Section 4. As a first step, we 
can describe hard and soft constraints as lambda equations 
by using sensor service types, indexes, the name of attributes 
in Python syntax, such as lambda i: motion1[i].delay <= 0.6. 
The encoder then encodes the lambda equations into Sugar 
Syntax with variable names. 

By solving the problem, the appropriate combination is 
selected and we confirm sensor service composition has been 
realized by the proposed method. It takes .251 seconds to 
encode the problem and .600 seconds to solve the problem 
(.900 seconds in total). The execution time increases with the 
scale of problem. The complex event we show in Section 4 is 
composed with three atomic events at most, however, 
complex events will be bigger with more atomic events in 
general such as more detailed events. As the number of 
atomic events in a complex event increases, the number of 
sensor service types for detecting them will be needed and it 
leads to the exponential growth in the number of sensor 
service instances and the number of QoS attributes. 
Therefore, the scale of problem can be regarded as 
determined by the number of sensor service instances and the 
number of QoS attributes. The former can be reduced by our 
definition of domains proposed in this paper, however, 
improvement of efficiency in recalculation is a critical issue 
because attributes differ with the sensor service and its 
increase is inevitable.  

So far in COP, dynamic COP which improves efficiency 
when recalculation is required by reusing the solution of 
previous problems [14] or generating robust solutions toward 
the future problem based on probabilities [15] and we 
consider they are applicable to sensor service composition 
problem. However, it has not become clear how big problem 

needs dynamic COP and detailed simulation about changes 
in the scale of problem is required for future work. 

VI.� RELATED WORKS 

A.� Event-Driven SOA 
As part of SOA research, event-driven SOA which 

introduces mechanisms into event-driven architecture 
(EDA) has been investigated. Spiess et al. proposed the 
integrated architecture, which abstracts interfaces with Web 
service standards and focuses on event-based messaging in 
order to enable access to devices in real world by using the 
service-oriented approach in enterprise services [5]. 

For realizing event-driven SOA, services needs to 
handle event. Juric proposed the extended model for 
managing EDA in SOA to yield event-driven service 
orchestration and services as event producers with event 
sources producing events or event consumers with event 
sinks receiving events [6]. Therefore, such service has event 
sources and/or sinks for responding to events in addition to 
regular service interface. Potocnik et al. proposed a model 
based on Complex Event Aware (CEA) services which 
correspond to complex events for realizing Complex Event 
Processing (CEP) which is not supported in existing SOA 
platforms [7]. Sensor service, the target of this research, is 
also an event service because it responds to events. 

B.� Sensor Service 
In SOA, sensor service was proposed to realize the 

decoupling of sensors by wrapping sensor functionalities as 
services such as Sensor Data as a Service or Sensing as a 
Service (SenaaS). Perera et al proposed a model for using 
sensing as a service to address the issues of technology, 
economy and social aspects in the domain of Smart Cities 
[8]. Also, Kyusakov et al. proposed improvements in the 
efficiency of deploying sensor nodes as Web services 
accessed by users via SOAP without any middleware [9].  

Sensor service is often mentioned in the context of 
accessing sensors from the cloud or data accumulation. We, 
on the other hand, focus on sensor service as an input 
interface of Event-based System (EBS) and achieving real 
time utilization. Alam et al. proposed a sensor virtualization 
framework for realizing event-driven SOA in IoT domain 
by using the concept of SenaaS [10]. Therefore, a key 
research issue is how to select and compose sensors 
virtualized as services for real time utilization. 

C.� Sensor Selection and Composition  
The combinational problem of sensors has been 

investigated for sensor selection and sensor composition. In 
horizontal service composition for Web services, selection 
and composition are almost synonymous because both 
presuppose input/output inclusion relation of services and 
several service instances should follow the workflow. 
However, in the case of sensor services, the workflow is not 
always given and therefore sensor service selection and 
composition do not have the same meaning. That is, sensor  

218



selection subsumes sensor composition.  
Sensor selection is the problem of deciding the set of 

sensors that satisfy functional requirements. Perera et al. took 
sensors to be services and proposed a model and algorithms 
of context-aware sensor search that could realize similar 
functionalities from a huge numbers of sensor service 
candidates by selection and ranking [11]. Beyond location 
information they employ comprehensive information 
including QoS of sensor services as context information.  

On the other hand, sensor composition is, unlike sensor 
selection, the problem of deciding the set of sensors that 
have the desired relationships. Gao et al. considered sensor 
services as an event service in event-driven SOA and 
proposed a QoS-aware composition method of event services 
according to the rules of complex events for detecting 
complex events, not single event [12]. They consider rules of 
complex events in the same way as workflows in Web 
services and realize event service composition in accordance 
to rules by defining QoS aggregation schemata and utility 
functions for each logical operator in complex event rules 
with optimization by a genetic algorithm (GA).  

VII.� CONCLUSION 
In this research, we introduced horizontal service 

composition by using COP which has been used for Web 
service composition and proposed a position-sensitive sensor 
service composition method. First we defined the domain 
with spatio-temporal requirements of sensor services toward 
atomic events and formalized the problem as COP by setting 
different aggregation functions for each logical operator in 
complex events. Moreover, we extended sensor service 
composition to include the detection of complex events with 
temporal relations by introducing temporal constraints. Also 
we realized our proposed method by implementation on 
Sugar and clarified the necessity of dynamic COP when the 
scale of problem will be bigger. Future work includes 
identifying how big a problem needs to be to trigger the use 
of dynamic COP by conducting detailed simulations of 
problems with varying scales. 
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