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SUMMARY Distributed edge cloud computing is an important com-
putation infrastructure for Internet of Things (IoT) and its task offloading
problem has attracted much attention recently. Most existing work on task
offloading in distributed edge cloud computing usually assumes that each
self-interested user owns one edge server and chooses whether to execute
its tasks locally or to offload the tasks to cloud servers. The goal of each
edge server is to maximize its own interest like low delay cost, which cor-
responds to a non-cooperative setting. However, with the strong develop-
ment of smart IoT communities such as smart hospital and smart factory,
all edge and cloud servers can belong to one organization like a technology
company. This corresponds to a cooperative setting where the goal of the
organization is to maximize the team interest in the overall edge cloud com-
puting system. In this paper, we consider a new problem called cooperative
task offloading where all edge servers try to cooperate to make the entire
edge cloud computing system achieve good performance such as low delay
cost and low energy cost. However, this problem is hard to solve due to
two issues: 1) each edge server status dynamically changes and task arrival
is uncertain; 2) each edge server can observe only its own status, which
makes it hard to optimize team interest as global information is unavail-
able. For solving these issues, we formulate the problem as a decentral-
ized partially observable Markov decision process (Dec-POMDP) which
can well handle the dynamic features under partial observations. Then, we
apply a multi-agent reinforcement learning algorithm called value decom-
position network (VDN) and propose a VDN-based task offloading algo-
rithm (VDN-TO) to solve the problem. Specifically, the motivation is that
we use a team value function to evaluate the team interest, which is then di-
vided into individual value functions for each edge server. Then, each edge
server updates its individual value function in the direction that can maxi-
mize the team interest. Finally, we choose a part of a real dataset to evaluate
our algorithm and the results show the effectiveness of our algorithm in a
comparison with some other existing methods.
key words: internet of things, edge cloud computing, multi-agent systems,
deep reinforcement learning

1. Introduction

With the rapid development of Internet of Things (IoT),
voluminous data is being produced from various IoT de-
vices [1] and such data is usually not useful until it is an-
alyzed well. However, IoT devices usually have poor com-
putational capacities, which requires for computing supple-
ments. Edge cloud computing, as an important computation
infrastructure of IoT, has been applied in many IoT scenar-
ios [2], [3]. It includes both cloud servers with high com-
putational resources and edge servers which are closer to
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the IoT devices and provide cloud-like computation service
with low delay [4].

Analyzing the data generated from IoT devices is usu-
ally regarded as a task. For instance, analyzing human body
data can be regarded as a health monitoring task. Edge
servers are usually allocated to various areas and each edge
server can offload its tasks to the remote cloud servers,
which is called task offloading in distributed edge cloud
computing [5]. Specifically, each edge server is accessed by
a task queue that holds several tasks at each step. Each edge
server observes its own status, such as CPU occupancy rate
to decide which tasks are to be performed locally and which
tasks are to be offloaded to the cloud servers. Based on
those offloading decisions, each edge server’s status would
be altered and a new task queue would arrive at the next
step. Different task offloading decisions usually correspond
to different performances such as delay cost and energy cost.
Then, how to offload the tasks with the aim of optimizing a
certain object like minimizing delay cost is an important re-
search topic in distributed edge cloud computing [5]–[7].

Many studies have examined the task offloading prob-
lem in distributed edge cloud computing, however they usu-
ally consider the problem at a user level where each user
owns an edge server and assume each edge server is self-
interested, which corresponds to a non-cooperative setting.
Specifically, each user only desires to maximize its own in-
terest, which may cause a conflict between them. For in-
stance, if many edge servers try to offload their tasks to
cloud servers with limited channel resources at the same
time, the offload rate will decrease due to network conges-
tion. With the high development of smart communities such
as smart factory, smart campus and smart hospital, the edge
servers are usually owned by an organization like a technol-
ogy corporation rather than users [8]–[10]. Thus, its goal is
to maximize the team reward that emphasizes overall inter-
est of all edge cloud servers rather than each edge server’s
own interest, which corresponds to a cooperative setting.
However, the existing studies are not suitable for this kind
of cooperative scenario, making further research essential.

In this paper, we study a new problem called the coop-
erative task offloading in distributed edge cloud computing.
This problem raises two issues: 1) each edge server’s status
dynamically changes and task arrival is uncertain. 2) each
edge server can observe only its own status, which corre-
sponds to a local observation, which makes it hard to achieve
cooperation. To cope with these issues, we formulate this
problem as a decentralized partially observable Markov de-
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cision process (Dec-POMDP) which is a classical model
that copes with dynamic decision problems with partial ob-
servations. Then, we apply a multi-agent reinforcement
learning (MARL) algorithm called value decomposition net-
work (VDN), and propose a VDN-based task offloading al-
gorithm (VDN-TO) to solve it. In VDN-TO, a team value
function is used to evaluate team interest and it is then di-
vided into individual value functions for each edge server
(regarded as an agent). Each agent updates its individual
value function in the direction that can maximize the team
reward. Finally, we choose part of a real Google datacenter
dataset to conduct evaluations to verify the effectiveness of
our proposed algorithm in a comparison with other existing
algorithms.

To sum up, our contributions are stated as follows:

• Unlike most existing work on task offloading in dis-
tributed edge cloud with a non-cooperative setting, we
consider a new problem called cooperative task offload-
ing in distributed edge cloud computing. We formulate
it as a Dec-POMDP to handle the features of dynamic
changes and partial observations.
• Starting with the VDN algorithm, we propose a novel

task offloading algorithm called VDN-TO algorithm to
solve this problem. It can make edge servers cooperate
with each other to optimize team rewards even under
partial observations.
• Evaluations on a Google datacenter dataset verify our

VDN-TO algorithm’s effectiveness in different settings
such as delay-sensitive and energy-sensitive cases.

2. Motivating Scenario

With the strong development of smart communities in
IoT [8], [9], edge cloud computing is being used in many
scenarios such as smart factories and smart hospitals [10].
In this section, we use the motivating scenario of the smart
hospital to illustrate the problem of cooperative task offload-
ing in distributed edge cloud computing. As shown in Fig. 1,
there are several inpatient wards in different areas and each
ward is equipped with an edge server. Each edge server

Fig. 1 A distributed edge cloud computing system in a smart hospital.

takes charge of performing the IoT tasks demanded by its in-
patient ward. For instance, analyzing patient’s body data to
monitor his/her health condition can be regarded as a health
condition monitoring task. If five patients are in one ward at
a moment, a task queue consisting of the five health condi-
tion monitoring tasks will arrive at the corresponding edge
server. The edge server can decide which tasks are executed
locally and which tasks are offloaded to the cloud servers.

Since cloud servers usually have more powerful com-
putation capacity than edge servers, it will cost less time if
the tasks are performed by cloud servers. However, offload-
ing time would become significant if many edge servers
choose to offload their tasks at the same time. This is be-
cause the offloading rate usually has an inverse relationship
with the number of offloaded tasks. Since all edge servers
are owned by one organization, all the edge servers are in co-
operative relationships and try to optimize the team interest
like minimizing the sum of all IoT task delay costs rather
than its own interest. If such cooperation is not achieved
well, delay in performing tasks may cause a bad user ex-
perience for patients. However, it is difficult to maximize
the team interest due to the issues stated in Sect. 1, which
requires further study.

3. Related Work

Cloud computing can provide sufficient computational re-
sources, yet it usually incurs huge bandwidth costs and
long delays, and so may not satisfy some latency-sensitive
IoT applications [11]. Edge computing, as a supplement of
cloud computing, can provide cloud-like services and it is
usually closer to the IoT devices with controllable latency
and low energy consumption [2]. However, edge servers are
not as rich in capacities such as processing speed and mem-
ory size as cloud servers. Therefore, edge cloud computing
has been proposed as a solution applied in many IoT sce-
narios [3], [12]. In addition, edge servers usually spread
across various areas, yielding which is called distributed
edge cloud computing.

In distributed edge cloud computing, an important
problem is how to offload the tasks arriving at edge servers
to cloud servers with the aim of optimizing some objective.
Many studies have examined task offloading in distributed
edge cloud computing. However, most of them considered
the problem in a non-cooperative setting. Chen et al. [5]
consider a multi-user computation offloading problem for
mobile-edge cloud computing. Each mobile device chooses
a channel to offload their computation tasks. However, the
uplink data rate is slow, which degrades performance, if
many devices choose the same channel. They assume that
the mobile devices are non-cooperative and compete for the
limited channel resources. They formulate the problem as
a theoretic game model and propose a distributed compu-
tation offloading algorithm. Liu et al. [6] consider an edge
cloud computing network with a three-layer hierarchical ar-
chitecture consisting of a cloud platform, multiple gateways,
and a lot of IoT users. The gateway allows a limited number
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of devices to be accessed at the same time, thus each de-
vice has a non-cooperative relationship with other devices.
They utilize a centralized user clustering method to group
the IoT users into different clusters according to user priori-
ties, and offloading proceeds in accordance with user priori-
ties. Chen et al. [7] also consider a non-cooperative environ-
ment where each end user observes its local environment to
learn optimal decisions for either local computing or edge
computing with the goal of minimizing long-term system
cost. They formulate it as a stochastic game and propose a
fully-decentralized learning method where each agent inde-
pendently learns its own policy. The above studies do not
consider the cooperative setting, where each edge server is
assumed to be self-interested, and simply learns its own pol-
icy independently. This approach can hardly satisfy the set-
ting wherein all edge servers belong to one organization and
the relationship of edge servers is cooperative. Thus, in this
paper, we study the new problem of cooperative task offload-
ing in distributed edge cloud computing.

4. Cooperative Task Offloading Problem

We consider the distributed edge cloud computing system
shown in Fig. 2, which includes several edge servers dis-
tributed among various areas and a cloud server cluster.
We regard multiple cloud servers as one single server en-
tity since this paper does not focus on how the tasks are
performed in the cloud servers. At each step, each edge
server would be accessed by a task queue consisting of sev-
eral tasks and the edge server decides which tasks to exe-
cute locally and which tasks to offload to the cloud servers.
Server status like CPU occupancy rate would be altered by
allocating the tasks and also influences task performance at-
tributes such as latency and energy consumption. We use
cost to evaluate the performance numerically, and consider
two types of costs: delay cost and energy cost in this pa-
per. The delay cost consists of computation delay and trans-
mission delay, and the energy cost is incurred by perform-
ing/uploading the tasks. We consider the goal of how to
minimize team cost in order to ensure all tasks in all edge

Fig. 2 In a distributed edge cloud computing system, task offloading can
trigger network congestion if many edge servers choose to upload tasks at
the same time.

servers have good performance. This means that all edge
servers should cooperate in deciding task offloading rather
than considering just their own interests.

While it seems that each edge can easily acquire status
information of the other servers by sending Hello packets,
we assume each edge server has only a partial observation
in which each edge server cannot observe other server sta-
tus information. The reasons for this setting are stated as
follows: 1) Since sending a packet takes a certain time, col-
lecting the status information of all edge servers will cost
more time that exponentially increases with the number of
edge servers, which incurs an additional delay cost. This
delay cost would become significant, especially if network
congestion happens [13]. 2) As each edge server must ac-
quire global information for all edge servers to do decision-
making, the size of observation also exponentially increases
with the number of edge servers. This would make learning
problematic when the number of edge servers is large [7].
3) Moreover, system robustness is degraded since each edge
server cannot make a decision until acquiring all edge server
information. If one server fails to send its own information,
all other edge servers are unable to make their decisions,
which paralyzes the whole edge cloud computing system.
Thus, we consider the problem in a decentralized way with
partial observations.
Server: An edge cloud computing system consists of sev-
eral servers SV = {sv0, sv1, sv2, . . . , sv|SV |} where we regard
many cloud servers as a single entity with infinite compu-
tational resources denoted as sv0, and svi (i > 0) represents
the i-th edge server. Each server’s parameters are denoted
by a vector

svi = [ f i, eci,CPUi,RAMi,Diski], (1)

where f i is server i’s computation rate denoting the exe-
cuted CPU cycles per second, eci is server i’s unit energy
cost denoting the energy consumed per CPU cycle, its unit
of measure is J/cyc (J is Joule and cyc is CPU cycle), and
it can be calculated via the measurement method stated in
[14], CPUi is server i’s available CPU resource, RAMi is
server i’s available RAM resource, Diski is server i’s avail-
able Disk resource. Moreover, these three types of resources
are altered by pushing/popping tasks. We denote CPUi

max,
RAMi

max, Diski
max as the maximum of these available re-

sources.
Task: At each step, a task queue consisting of several tasks
might arrive at edge server svi, which is denoted as tai =

{tai
1, ta

i
2, . . . , ta

i
|tai |} with

tai
j = [worki

j, b
i
j,Reqi.CPU

j ,Reqi.RAM
j ,Reqi.Disk

j ], (2)

where worki
j is task j’s workload denoting the CPU cycles

required to be performed, bi
j is task j’s data size whose unit

of measure is bit. Although bi
j can be independent with

worki
j, we assume bi

j has a linear relationship with worki
j

in this paper, i.e., bi
j = c ∗ worki

j, where c is a constant
whose unit of measure is bit/cyc. Reqi.CPU

j , Reqi.RAM
j and
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Reqi.Disk
j are task j’s requirements for CPU, RAM and Disk

resources.
Each task would be performed either on edge server

or offloaded to the cloud servers. Thus, we refer to some
related work to set the costs corresponding to the parts on
which they are executed.
Computing at edge server: First, we consider the case
when the task is performed on edge servers and refer to [5]
to set the following equations. The computation time of the
task tai

j is given by

ti
j =
worki

j

f i
, (3)

where the bigger the f i is, the less time ti
j is. The corre-

sponding computation energy is given by

ei
j = eciworki

j, (4)

where the bigger the worki
j is, the more energy it costs.

Thus, the sum cost of computation time and energy at the
edge servers can be calculated by

Ci
j,edge = ωtt

i
j + ωeei

j, (5)

where ωt, ωe ∈ [0, 1] denote the weighting parameters of
delay and energy (ωt + ωe = 1).
Computing at cloud server: Similarly, we can calculate the
cost while the task is offloaded to the cloud servers. We con-
sider that a base-station is used to establish wireless com-
munication channel between the edge servers and the cloud
servers [15]. Since all edge servers belong to one organi-
zation, we assume they share one wireless channel. Then,
from [5]–[7] offload rate ur(U p) is calculated by

ur(U p) = w log2

(
1 +

qg
ω + qg

∑
i�0 |U pi|

)

= w log2

(
1 +

1
ω
qg +
∑

i�0 |U pi|
)

= w log2

(
1 +

1
l +
∑

i�0 |U pi|
)
,

(6)

where w is the channel bandwidth whose unit of measure
is bit/s, log2

(
1 + qg

ω+qg
∑

i�0 |U pi |

)
denotes the partition of the

channel bandwidth that can be used (dimensionaless) where
the more tasks are uploaded, the smaller this value is, q is the
edge server’s transmission power which is determined by
the wireless base-station according to some power control
algorithms such as [16], [17], g denotes the channel gain
between the edge server and the base-station,

∑
i�0 |U pi| is

the number of tasks being offloaded from all edge servers,
U pi is the set of tasks being offloaded from server i, U p
is the set including all tasks offloaded, ω is the background
noise power. Since ω, q and g are constants, we denote l =
ω
qg as the channel coefficient. Thus, the unit of measure of
upload rate ur(U p) is bit/s. For instance, let us consider the
case where w = 10bit/s and l = 0. Then, at a step, if only
one task is uploaded, the upload rate will be 10 log2(2) =

10bit/s. If two tasks are uploaded at the same time, the
upload rate will be 10 log2(3/2) = 5.8bit/s.

Correspondingly, the offloading time of task ti
j,o f f ∈

U pi is given by

ti
j,o f f (U p) =

bi
j

ur(U p)
. (7)

After the tasks are offloaded to cloud server sv0, its corre-
sponding calculation time is given by

ti
j,exe =

worki
j

f 0
, (8)

where f 0 is the computation rate of cloud server sv0. Since
in most IoT environments task arrival might be sparse, this
paper assumes that the cloud servers are accessed using in
on-demand manner where the user only pays when the cloud
servers are in running. Then, the more task workloads (CPU
workloads) are uploaded to the cloud servers, the longer
usage-time and a higher cost (e.g., fee) would be. Since
the energy cost increases in proportion to CPU workload,
the evaluations in this paper use energy cost. Specially, the
computation energy of executing task ti

j at cloud server is
defined by

ei
j,exe = ec0worki

j. (9)

From [5], the energy of uploading task ti
j to the cloud servers

is

ei
j,up =

qbi
j

ur(U p)
. (10)

The sum cost of computation time and energy for perform-
ing task tai

j on cloud server sv0 can be calculated by

Ci
j,cloud(U p) = ωt(t

i
j,o f f (U p) + ti

j,exe) +ωe(ei
j,exe + ei

j,up).

(11)

Then, at one step the total cost of performing the tasks
from all servers can be calculated and is denoted as Cost. In
this paper, the following three cases are considered respec-
tively.
Latency-sensitive case: only delay cost is desired to be
minimized. Then, the total delay cost of both edge and cloud
servers can be calculated by

Ctime =

|SV |∑

i=1

[∑

j�U pi

ti
j +
∑

j∈U pi

(ti
j,o f f (U p) + ti

j,exe)
]
. (12)

Thus, we have Cost = Ctime in latency-sensitive case.
Energy-sensitive case: only energy cost is desired to be
minimized. Then, the total energy cost of both edge and
cloud servers can be calculated by

Cenergy =

|SV |∑

i=1

[ ∑

j�U pi

ei
j +
∑

j∈U pi

(ei
j,exe + ei

j,up)
]
. (13)

Thus, we have Cost = Cenergy in energy-sensitive case.
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Balance case: the sum of delay and energy cost is desired
to be minimized, where Cost is defined based on Eqs. (12)
and (13).

Cost = ωt
Ctime −Cmin

time

Cmax
time −Cmin

time

+ ωe

Cenergy −Cmin
energy

Cmax
energy −Cmin

energy
, (14)

where Cmax
time, Cmin

time, Cmax
energy and Cmin

energy represent the maxi-
mum/minimum values of time and energy, separately.

Moreover, the tasks must be accomplished by provid-
ing enough computation resources to the edge server. Ob-
viously the total computation resource requirements of all
tasks executed at edge server svi cannot exceed the maxi-
mum computation resource of server svi. That is,

∑

j�U pi

Reqi.CPU
j +CPUi ≤ CPUi

max,

∑

j�U pi

Reqi.RAM
j + RAMi ≤ RAMi

max,

∑

j�U pi

Reqi.Disk
j + Diski ≤ Diski

max.

(15)

Thus, the goal is to minimize the discounted cost
summation under a period with certain length T , i.e.,∑T

t=1 γ
tCost[t], where γ is a discount factor denoting the im-

portance of future cost. In conclusion, a cooperative task
offloading problem in distributed edge cloud computing is
defined as follows.
Definition 1: Given a distributed edge cloud computing sys-
tem with |SV | servers and a certain period consisting of T
steps, the goal is to minimize the discounted cost summation
of all servers in an episode with satisfying the constraints of
computation resources, i.e.,

min
T∑

t=1

γtCost[t]

s.t. Eq. (15)

(16)

5. Formulate Problem as Dec-POMDP

The problem of cooperative task offloading in distributed
edge cloud computing has two distinctive features: partial
observations and dynamic changes. Thus, we formulate this
problem as a Dec-POMDP which is a classical model for
formulating discrete time decision processes with partial ob-
servations [18].

In Dec-POMDP, each agent has a local observation and
obtains a joint immediate reward depending on the results
from all agents. Dec-POMDP can be described as the tu-
ple <N ,S,Ai,Oi,T , ri>, where N is the set of agents, S is
the set of states, Ai is the set of agent i’s actions and col-
lecting each agent action ai ∈ Ai can form a joint action
a = a1 × · · · × a|N| ∈ A = A1 × · · · × A|N|, Oi is the set
of agent i’s observation, T is the state transition function
and T (s, a, s′) is the probability of the environment transi-
tioning to state s′ after taking joint action a under state s,

i.e., T (s, a, s′) = Prob(s′|s, a), ri is the reward function for
agent i and ri(s, a, s′) is the reward obtained by agent i after
taking joint action a under state s. How to formulate the co-
operative task offloading problem as Dec-POMDP is stated
as follows.
Observation: We regard each edge server as an agent, each
edge server has only a partial observation consisting of two
parts: 1) its own current status, 2) its arriving task queue.
Thus, agent i’s observation is defined as

oi[t] =
[

svi[t], tai[t]
]
, (17)

where svi[t] is server i’s status at step t, and tai[t] is edge
server i’s task queue arriving at step t.
State: By collecting each edge server’s observation, we can
form a state defined as

s[t] =
[

o1[t], . . . , o|SV |[t]
]
. (18)

Action: As for observation oi[t], each edge server would
decide which tasks to execute locally or to offload to the
cloud servers. Each task offloading set U pi can be regarded
as action ai ∈ {0, 1}|tai[t]| where 0 represents local computing
and 1 represents offloading. For instance, as for task queue
tai = {tai

1, ta
i
2, ta

i
3, ta

i
4}, ai = [0, 0, 1, 0] means that task tai

3
is offloaded to the cloud servers and the other three tasks are
performed locally. Then, we define a joint action at step t
which includes the actions from all edge servers as follows.

a[t] = (a1[t], . . . , a|SV |[t]). (19)

Policy: We define policy function πi : Oi × Ai → [0, 1]
for each agent, which means each agent takes an action ai

under its observation oi based on policy πi probabilistically.
Specially, a ε-greedy policy is used where the agent chooses
a current optimal action or randomly chooses action with a
certain probability.
Transition function: The server statuses of the next step
are deterministically decided after making the task offload-
ing decisions from all servers. However, the task queues
arriving at next step are uncertain, which corresponds to a
stochastic environment. Thus, the environment transfers to
the next state s[t + 1] upon completion of joint action a[t]
based on transition function T : S × A × S → [0, 1]; this
means the environment probabilistically transfers to the next
state s′, depending on current state s and joint action a, i.e.,
T (s, a, s′) = Prob(s′|s, a).
Reward function: As for the transition (s[t], a[t], s[t + 1]),
we can obtain cost Cost[t] at step t. In Dec-POMDP, the ob-
jective is always to maximize the reward r(s[t], a[t], s[t+1]),
thus we take the inverse of Cost[t] as the immediate reward
at step t, i.e., r(s[t], a[t], s[t + 1]) = −Cost[t]. Thus, mini-
mizing the delay and energy costs corresponds to maximiz-
ing the reward.
Objective function: Let us consider a certain period h with
T steps and h can be represented as follows,

h = [s[1], a[1], s[2], a[2], . . . , s[T ], a[T ], s[T + 1]].

(20)
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Then, the discounted sum R(h) of the immediate rewards in
the period is given by

R(h) =
T∑

t=1

γt−1r(s[t], a[t], s[t + 1]), (21)

which is what we want to maximize in one period. Thus, the
objective function is given as follows.

J(π1, . . . , π|SV |) = Eπ1,...,π|SV |,T
[
R(h)
]
, (22)

which means we want to identify a couple of policies
(π1, . . . , π|SV |) for all agents that can maximize the expec-
tation of team rewards during total period h.

6. Algorithm

There are usually two main types of Dec-POMDP: non-
cooperative setting and cooperative setting. The non-
cooperative setting can be solved by using fully decentral-
ized MARL algorithms such IDQL [19] and IDRQL [20].
Their effectiveness in tackling the task offloading problem
in edge clouds has been confirmed in some studies [21].
The cooperative setting considered in this paper can be
solved by the value decomposition network (VDN) [22] and
QMIX [23], classical cooperative MARL algorithms. In this
section, we propose a novel VDN-based task offloading al-
gorithm (VDN-TO) for distributed edge cloud computing.
Unlike the traditional VDN which focuses on the general
case, VDN-TO is intended to solve the server cooperation
problem in edge cloud computing. Specifically, VDN-TO
can be divided into two parts: 1) centralized learning and
2) decentralized execution, as shown in Fig. 3.

As for 1) centralized learning, although each agent can
independently learn its individual policy by its own individ-
ual reward like in [21], it cannot achieve a cooperative be-
havior since the team reward is not considered. Thus, we
consider to train the agents in a centralized way.

As for 2) decentralized execution, the joint action space
|A||SV | will exponentially increase with the number of agents
if we directly choose a joint action from the joint action
spaceA = A1×· · ·×A|SV |. This is called centralized execu-
tion which makes the problem suffer the curse of dimension-
ality. Thus, we consider to make each agent independently

Fig. 3 The framework of value decomposition network based task off-
loading (VDN-TO) algorithm in distributed edge cloud computing.

choose action ai from its own action spaceAi.

6.1 Centralized Learning

In reinforcement learning, state-action value function Q :
S × A → R is normally used to learn the optimal policy
for agents; it evaluates the quality that results from taking
particular actions in certain states [24], [25]. After learning
an optimal state-action value function, an optimal policy can
be obtained by taking the action with maximum state-action
value (Q-value). In this paper, we consider two types of Q-
value: total Q-value Qtot and individual Q-value Qi. Total
Q-value Qtot is used to evaluate joint action a under the team
reward. Then, individual Q-value Qi is updated in the direc-
tion that can maximize Qtot and is used to choose individual
action ai. We elucidate them separately as follows.
Total Q: In MARL, the Q-value for state and joint action
is used to denote the discounted sum of rewards that can be
obtained in the future after taking joint action a under state
s. When a couple of optimal policies (π1∗, . . . , π|SV |∗) are
given, it is called optimal Q-value and is defined as

Q∗(s, a) = Eπ1∗,...,π|SV |∗
[
R(h) | s[1] = s, a[1] = a

]
,

where “|s[1] = o, a[1] = a” means the initial state and joint
action are fixed on state s and a, respectively. Q∗(s, a) is the
conditional expectation of R(h) given s[1] = s, a[1] = a. By
recursion, it can be rewritten as follows.

Q∗(s, a) =
∑

s′ ∈S

T (s, a, s′)
[
r(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
.

(23)

However, we cannot obtain the state s in Dec-POMDP
as each agent has only its own partial observation oi. But,
agents can benefit from conditioning on their entire action-
observation history τi

t until step t [23], which is defined by

τi
t = [oi[1], ai[1], oi[2], ai[2], . . . , oi[t−1], ai[t−1], oi[t]].

(24)

We collect all agents’ action-observation histories at step t
as joint trajectory τt = [τ1

t , . . . , τ
|SV |
t ]. Then, we replace the

global state s with τt to define total Q-value Qtot as Qtot :
Γ×A → Rwhere Γ is the set of all possible joint trajectories
τ. Specially, Qtot is defined as the sum of the individual Q-
values of all agents, i.e.,

Qtot(τ, a; θ) =
|SV |∑

i=1

Qi(τi, ai; θ).

Then, our goal is to learn an optimal Qtot∗ that can maximize
the sum R(h) of team rewards over period h. Specially, a
reply memory D is used to store the tuple of (τt, r[t]) where
the joint trajectory τt stores the observations and actions of
all agents upto step t and r[t] is the team reward obtained
at step t. Then, we randomly sample the tuples from D to
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Fig. 4 The detail of GRU module.

train Qtot(τ, a) with the target of minimizing the following
loss function:

L(θ) =
∑

k∈D

[(
yk − Qtot(τk, ak; θ)

)]
, (25)

where k is the sample index and yk = rk+γmaxa′ Q(τk, a′; θ)
is the target, θ is the set of all agent parameters.
Individual Q: We note above that Qtot is the sum of indi-
vidual Qi which will be updated with the aim of maximiz-
ing Qtot by backpropagation gradients. Specially, the value
of Qi is based on a deep neural network called deep recur-
rent Q-network (DRQN) [20]. The input of DRQN is each
agent’s observation, previous action and its history informa-
tion based on τi and the output is the values Qi(τi, ai) for
each action ai ∈ Ai.

In DRQN, a classical recurrent neural network called
gated recurrent unit (GRU) is used to process observation-
action history. Specially, τi

t can be handled by the GRU unit
to obtain abstract information hi

t. As shown in Fig. 4, the
current information (oi[t], ai[t−1]) and the previous abstract
information hi

t−1 are input to GRU and then the updated ab-
stract information hi

t is output and used as part of the input
in the next step; xi

t is the result of encoding (oi[t], ai[t − 1])
by a multilayer perceptron (MLP) layer. Specially, hi

t can be
calculated as follows.

ri
t = δ(Wr · [hi

t−1, x
i
t]),

zi
t = δ(Wz · [hi

t−1, x
i
t]),

h̃i
t = tanh(Wh · [rt ∗ hi

t−1, x
i
t]),

hi
t = (1 − zi

t) ∗ hi
t−1 + zi

t ∗ h̃i
t,

(26)

where [ · , · ] means to connect two vectors and ∗ means
the product of two matrices. In this case, since each edge
server has the same structure, we assume all agents share
one neural network.

6.2 Decentralized Execution

The above sub-setion described how Qi is trained in a cen-
tralized way. However, choosing actions in a centralized
way will incurs a huge joint action space, as it increases
exponentially with agent number. Thus, we consider the de-
centralized execution approach where each agent indepen-
dently chooses action ai based on its individual Qi, i.e.,

Algorithm 1 Value Decomposition Network based Task of-
floading Algorithm (VDN-TO)
1: Initialize replay memory D to capacity N
2: Initialize DRQL network Qi with random weights
3: for episode m=1, M do
4: for step t =1, T do
5: For each edge server i, the task queue tai[t] arrives and its own

status svi[t] is observed to form the observation
oi[t] = [svi[t], tai[t]]

6: Add oi[t] and ai[t − 1] to the trajectory τit for each agent i
7: Decentralized execution:
8: for edge server i =1, |SV | do
9: Based on the trajectory τit−1, edge server i randomly selects

an action ai fromAi

10: otherwise selects ai[t] = argmax
ai

Qi(τit, a
i; θ)

11: end for
12: Collect the actions ai[t] from all edge servers to form a joint

action a[t] = [a1[t], . . . , a|SV |[t]]
13: Execute joint action a[t] in distributed edge cloud, then transfer

to the next state s[t + 1]
14: Obtain reward r[s[t], a[t], s[t + 1]] and set s[t + 1] = s[t]
15: Store transition (τ[t], r[t]) in D
16: Centralized learning:

Sample random mini-batch of transitions from D
17: Calculate yk and perform a gradient descent step on (yk −

Qtot(τk, ak; θ))2 to update θ
18: end for
19: end for

argmax
a

Qtot(τ, a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

argmax
a1

Q1(τ1, a1)

argmax
a2

Q2(τ2, a2)

· · ·
argmax

a|SV |
Q|SV |(τ|SV |, a|SV |)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This means that the result of collecting each opti-
mal action by operation argmax

a
Qi(τi, ai) is equivalent to

that of directly searching for a joint action by operation
argmax

a
Qtot(τ, a). To ensure that a global argmax performed

on Qtot yields the same result as a set of individual argmax
operations performed on each Qi, monotonicity can be en-
forced through a constraint on the relationship between Qtot

and each Qi [23], i.e, ∂Q
tot

∂Qi ≥ 0. This means that all Qi func-
tions have the same monotonicity with regard to Qtot. It is
easy to prove that VDN-TO satisfies this equation since we
have ∂Q

tot

∂Qi = 1 > 0 for each agent.
Finally, the specific process of decentralized execution

is shown in the left part of Fig. 3 where each edge server
captures its observation oi, and takes action ai based on its
own policy πi(τi, ai). Then, all observations oi are collected
to form state s = (o1, . . . , o|SV |) and all actions are collected
to form a joint action a = (a1, . . . , a|SV |). The environment
transfers to the next state s′ based on the transition function
T (s, a, s′) and reward r(s, a, s′) can be obtained. Specifi-
cally, our proposed VDN-TO algorithm is performed by Al-
gorithm 1 in the distributed edge cloud computing.
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7. Evaluation

This section uses task data from a real dataset to evaluate
the performance of our proposed method in performing task
offloading in distributed edge cloud computing.

7.1 Evaluation Settings

Task setting: The real data chosen is called google-cluster
data; it represents 29 day’s worth of Borg cell information
from May 2011, on a cluster of about 12.5k servers [26].
The task information includes the computation resources of
RAM, CPU and Disk, all of which are used directly as task
parameters. Since it does not include the information about
task workload, we randomly generate the workload of each
task following a uniform probability distribution. Specif-
ically, in this paper we use a uniform distribution among
(0, workmax) where workmax is the maximum workload of the
tasks, i.e., work ∼ uni f (0, workmax).

Since the scenario we considered in this paper is a
smart hospital which usually hosts no more than ten servers,
we randomly choose five servers’ data from two days [26].
The chosen server numbers are {3938719206, 351618647,
329150663, 1303745, 431052910}. Then, each episode is
deemed to be finished when all tasks in the task set are been
completed.
Neural network setting: The detail of neural network
structure in VDN-TO is shown in Fig. 5 (Since each agent
has the same neural network framework, we only draw one
of them). As for the first MLP, its input is agent i’s current
observation oi and its previous action ai, then the layer size
is equal to |oi| + |ai|. Specifically, each server has five fea-
tures based on Eq. (1) and each action has dimension of 5
(we assume the maximum number of arriving task at each
step is 5, i.e., |ai| = tamax = 5). Thus, the input MLP layer
size is 10 and none activation function is used. Then, GRU
with 64 neurons takes the results of the first MLP layer and
its hidden variable hi

t−1 at the last step as the inputs. The ac-
tivation function of the layer is tanh. Thus, it outputs hidden
variable hi

t with dimension of 64. As for the second MLP,
it takes hi

t as its input and outputs the Q-values for each ac-
tion. The output layer size 2tamax is equal to 25 = 32, since
we assume tamax = 5. We implemented it using Tensorflow
2.0.

Fig. 5 The detail of neural network structure.

7.2 Evaluation Results

In this paper, the following task offloading (TO) baseline
algorithms are adopted: 1) IDQL-TO [21] which is a deep
RL based TO approach; 2) QL-TO [27] which is a tabular
RL based TO approach; 3) Joint-TO [28] which is a rule-
based TO approach where the edge servers are divided to
two groups according to the task data size that they need
to offload, and only one group of servers can jointly offload
tasks; and 4) random policy. Their performance is compared
to that of our VDN-TO algorithm. Since the tasks include
some random elements which make them different at each
episode, we take 5 episodes as one round and use the aver-
age of R(h) in one round to compare. Specially, each exper-
iment consisted of 500 episodes which corresponds to 100
rounds. We used the same hyperparameters for all RL/DRL
based algorithms with α = 0.01 and γ = 0.9.

First, we consider the latency-sensitive case whose ob-
jective cost is defined in Eq. (12). The results are shown in
Fig. 6. QL-TO approaches the performance of random pol-
icy. That is because QL-TO is a tabular method which pre-
vents it from learning an optimal policy in large state space.
Since IDQL-TO can well cope with the large state space,
it can attain better performance than QL-TO. However, the
result of learning is unstable: the range of its oscillation is
very large, and sometimes its performance worse than that
of random policy even in the final learning phase. This is
because each edge server just considers its own interest and
they will conflict if they choose to offload many tasks at the
same time. Joint-TO can attain better performance than QL-
TO and is more stable than IDQL-TO. However, its per-
formance does not improve since it does not learn over the
iterations. On the other hand, our proposed VDN-TO algo-
rithm uses a total Q and each edge server tries to optimize it
in a cooperation way, which yields good and stable perfor-
mance.

Second, we consider the energy-sensitive case whose
objective cost is defined in Eq. (13). The results are shown
in Fig. 7. Since cloud servers have much higher unit energy

Fig. 6 Comparing the performances of VDN-TO with IDQL-TO,
QL-TO, Joint-TO and random policy in latency-sensitive case.
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Fig. 7 Comparing the performances of VDN-TO with IDQL-TO,
QL-TO, Joint-TO and random policy in energy-sensitive case.

Fig. 8 Comparing the performances of VDN-TO with IDQL-TO,
QL-TO, Joint-TO and random policy in balance case.

cost than edge servers, the optimal policy is to execute all
tasks at edge servers in this energy-sensitive case. Thus,
each edge server’s maximized interest can result in maxi-
mizing the team interest. Moreover, each agent’s optimal
policy does not influence other agents’ optimal policies. Al-
though QL-TO still suffers the large state space problem,
its learning environment becomes more stable (non-interest-
conflict) than in the latency-sensitive case so its performance
is superior to that of random policy. Joint-TO can get the
same performance as QL-TO in a stable way. However, its
performance does not improve since it does not learn over
the iterations. In this non-interest-conflict situation, each
edge server’s maximized interest is consistent with team
maximized interest, thus the self-interested IDQL-TO can
also achieve a performance as good as VDN-TO. Our pro-
posed VDN-TO algorithm can still learn optimal policies in
a stable manner.

Third, we consider a balance case whose objective cost
is defined in Eq. (14). Without losing generality, we set
ωt = 0.5, ωe = 0.5 in Eq. (14). The results are shown in
Fig. 8. Although QL-TO still suffers the large state space
problem, its learning environment is more stable than in
the latency-sensitive since the energy-sensitive part is in-

cluded. Thus, its performance is better than that of random
policy. Joint-TO still maintains a stable performance due
to its characteristic of rule-based. Although IDQL-TO has
similar performance with VDN-TO, it exhibits oscillation.
Since the latency part requires a cooperative setting under
non-interest-conflict situation, which can be well handled by
VDN-TO, the performance of VDN-TO is better than that of
IDQL-TO.

To summarize the above experiments, we can conclude
that our proposed VDN-TO algorithm can solve the cooper-
ative task offloading problem in distributed edge cloud com-
puting. It exceeds the performance of other baseline algo-
rithms in three classical settings of edge cloud computing:
latency-sensitive case, energy-sensitive case, and a balance
between latency and energy. Moreover, we consider a de-
centralized setting and the centralized manner is not con-
sidered in this paper. Although the centralized manner can
evaluate the results of joint action more accurately (it treats
the problem as a single agent problem), it might yield bet-
ter performance than cooperation under partial observations.
However, this advantage might be effective only if the num-
ber of edge servers is small, which is seldom the case in
real-world scenarios.

8. Conclusion

In this paper, we studied the new problem of cooperative
task offloading in edge cloud computing, with the target of
maximizing team reward. We proposed a value decomposi-
tion network based task offloading algorithm called VDN-
TO to guide the edge servers towards cooperating with each
other. We validated our approach by using a real dataset
to compare it with baseline algorithms. The results showed
our approach achieved significantly bigger rewards than the
baseline algorithms. We plan to conduct a larger scale ex-
periment to examine the effectiveness of our proposed algo-
rithm in more depth.
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[15] D. López-Pérez, X. Chu, A.V. Vasilakos, and H. Claussen, “On dis-
tributed and coordinated resource allocation for interference miti-
gation in self-organizing LTE networks,” IEEE/ACM Trans. Netw.,
vol.21, no.4, pp.1145–1158, 2013.

[16] M. Xiao, N.B. Shroff, and E.K.P. Chong, “A utility-based power-
control scheme in wireless cellular systems,” IEEE/ACM Trans.
Netw., vol.11, no.2, pp.210–221, 2003.

[17] M. Chiang, P. Hande, T. Lan, and C.W. Tan, Power control in wire-
less cellular networks, Now Foundations and Trends, 2008.

[18] F.A. Oliehoek and C. Amato, A concise introduction to decentral-
ized POMDPs, Springer Briefs in Intelligent Systems, Springer,
2016.

[19] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS One, vol.12, no.4, e0172395,
2017.

[20] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for par-
tially observable MDPs,” AAAI Fall Symposium on Sequential De-
cision Making for Intelligent Agents, pp.29–37, 2015.

[21] X. Liu, J. Yu, Z. Feng, and Y. Gao, “Multi-agent reinforcement
learning for resource allocation in IoT networks with edge comput-
ing,” China Communications, vol.17, no.9, pp.220–236, 2020.

[22] P. Sunehag, G. Lever, A. Gruslys, W.M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J.Z. Leibo, K. Tuyls, and T.
Graepel, “Value-decomposition networks for cooperative multiagent
learning based on team reward,” The 17th International Conference
on Autonomous Agents and Multiagent Systems, no.3, pp.2085–
2087, 2017.

[23] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster,
and S. Whiteson, “Qmix: Monotonic value function factorisation for
deep multi-agent reinforcement learning,” International Conference
on Machine Learning, pp.4295–4304, 2018.

[24] C.J.C.H Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol.8, no.3-4, pp.279–292, 1992.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G.
Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.
Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level con-
trol through deep reinforcement learning,” Nature, vol.518, no.7540,
pp.529–533, 2015.

[26] C. Reiss, J. Wilkes, and J.L. Hellerstein, “Google cluster-usage
traces: Format + schema. Technical report,” Google Inc., Mountain
View, CA, USA, 2011.

[27] F. Jiang, W. Liu, J. Wang, and X. Liu, “Q-learning based task off-
loading and resource allocation scheme for internet of vehicles,”
IEEE/CIC International Conference on Communications in China,
pp.460–465, 2020.

[28] S. Barbarossa, S. Sardellitti, and P.D. Lorenzo, “Joint allocation
of computation and communication resources in multiuser mobile
cloud computing,” IEEE 14th Workshop Signal Process. Adv. Wire-
less Commun., pp.26–30, 2013.

Shiyao Ding is a Ph.D. student in infor-
matics from Kyoto University, Japan since Oc-
tober 2019. He received the Master degree in
engineering from Osaka University, Japan in
September 2019. His current research interests
include reinforcement learning, multiagent sys-
tems, services computing, Internet of Things,
edge computing and cloud computing.

Donghui Lin received the Ph.D. degree
in informatics from Kyoto University, Japan in
2008. He was a researcher at National Insti-
tute of Information and Communications Tech-
nology (NICT), Japan in 2008–2011. He then
joined, in 2012, the Department of Social In-
formatics of Kyoto University, where he is an
associate professor since 2018. His current re-
search interests include services computing, In-
ternet of Things, multiagent systems, and inter-
cultural collaboration. He was a recipient of the

2012 Achievement Award of the Institute of Electronics, Information and
Communication Engineers (IEICE), Japan. He has been serving as a pro-
gram committee member for major international conferences in the areas
of services computing and multiagent systems, including IEEE SCC, IEEE
ICWS and AAMAS.

http://dx.doi.org/10.1109/ispa/iucc.2017.00129
http://dx.doi.org/10.1109/tnet.2015.2487344
http://dx.doi.org/10.1109/jiot.2020.2970110
http://dx.doi.org/10.1109/jiot.2018.2876279
http://dx.doi.org/10.1109/icit.2018.8352380
http://dx.doi.org/10.1109/percomw.2017.7917626
http://dx.doi.org/10.1109/mnet.2019.1800083
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1109/jiot.2016.2579198
http://dx.doi.org/10.1186/s13638-020-01801-6
http://dx.doi.org/10.1109/INFCOM.2012.6195685
http://dx.doi.org/10.1109/tnet.2012.2218124
http://dx.doi.org/10.1109/tnet.2003.810314
http://dx.doi.org/10.1561/9781601981370
http://dx.doi.org/10.1007/978-3-319-28929-8
http://dx.doi.org/10.1371/journal.pone.0172395
http://dx.doi.org/10.23919/jcc.2020.09.017
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/iccc49849.2020.9238925
http://dx.doi.org/10.1109/spawc.2013.6612005

