IEICE

TRANSACTIONS

on Information and Systems

VOL. E105-D NO. 5
MAY 2022

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

864

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.5 MAY 2022

| PAPER Special Section on Knowledge-Based Software Engineering |

Deep Coalitional Q-Learning for Dynamic Coalition Formation in

Edge Computing

Shiyao DING ™, Student Member and Donghui LIN™, Member

SUMMARY With the high development of computation requirements
in Internet of Things, resource-limited edge servers usually require to coop-
erate to perform the tasks. Most related studies usually assume a static co-
operation approach which might not suit the dynamic environment of edge
computing. In this paper, we consider a dynamic cooperation approach by
guiding edge servers to form coalitions dynamically. It raises two issues:
1) how to guide them to optimally form coalitions and 2) how to cope with
the dynamic feature where server statuses dynamically change as the tasks
are performed. The coalitional Markov decision process (CMDP) model
proposed in our previous work can handle these issues well. However, its
basic solution, coalitional Q-learning, cannot handle the large scale prob-
lem when the task number is large in edge computing. Our response is to
propose a novel algorithm called deep coalitional Q-learning (DCQL) to
solve it. To sum up, we first formulate the dynamic cooperation problem of
edge servers as a CMDP: each edge server is regarded as an agent and the
dynamic process is modeled as a MDP where the agents observe the cur-
rent state to formulate several coalitions. Each coalition takes an action to
impact the environment which correspondingly transfers to the next state
to repeat the above process. Then, we propose DCQL which includes a
deep neural network and so can well cope with large scale problem. DCQL
can guide the edge servers to form coalitions dynamically with the target
of optimizing some goal. Furthermore, we run experiments to verify our
proposed algorithm’s effectiveness in different settings.

key words: internet of things, edge computing, multi-agent systems, coali-
tion structure generation, reinforcement learning, MDP, deep Q-network

1. Introduction

With the high development of Internet of Things (IoT), edge
computing has become a fundamental infrastructure of IoT,
since it can provide low latency and low energy consump-
tion for performing tasks [1], [2]. However, in IoT environ-
ments one resource-limited edge server usually cannot per-
form the tasks whose workloads are high, and so the cooper-
ation of multiple edge servers is required [3], [4]. However,
most related studies [S]-[8] assume a static cooperation ap-
proach like assigning a server as a helper server to perform
the tasks offloaded from the other servers. However, the
static cooperation approach might not suit the dynamic en-
vironment of edge computing.

In this paper, we study a new approach that encour-
ages edge servers to dynamically cooperate while avoiding
the conventional solution of using fixed cooperation rules.

Manuscript received May 10, 2021.
Manuscript revised October 22, 2021.
Manuscript publicized December 14, 2021.
"The authors are with the Graduate School of Informatics,
Kyoto University, Kyoto-shi, 606—-8501 Japan.
a) E-mail: dingshiyao0217@gmail.com
b) E-mail: lindh@i.kyoto-u.ac.jp
DOI: 10.1587/transinf.2021KBP0007

This dynamic cooperation problem raises two issues as fol-
lows. 1) If we call the servers that can cooperate to perform
the tasks a coalition, then guiding them to optimally form
coalitions is difficult. 2) Moreover, edge computing yields
a dynamic environment where server statuses like CPU oc-
cupancy rate usually change as the tasks are pushed/popped.
For instance, allocating more tasks to a server raises its CPU
occupancy rate. A higher CPU occupancy rate usually cor-
responds to a lower computation speed which degrades la-
tency performance.

As for issue 1), coalition structure generation (CSG),
as a classical theoretic model for studying cooperation prob-
lems, is often used to solve cooperation problems by form-
ing coalitions among agents. Specifically, it guides a set of
agents to form several coalitions to obtain more rewards than
possible with a single agent [9]-[11]. CSG will be solved
once an optimal coalition formation structure is located.
However, as stated in issue 2), edge server status such as
CPU occupancy rate, dynamically changes with task execu-
tion and definitively influences task performance [12]. Thus,
while coalition structures also need to change to suit this dy-
namic, CSG cannot cope with this kind of dynamic. As for
issue 2), although dynamic features can be formulated as
a Markov decision formation (MDP), a classical model for
dynamic decision, it does not include the feature of coalition
formation. Therefore, how to realize the dynamic coalition
formation of edge servers requires a new theoretical model.

In our previous work [13], we proposed a model called
coalitional Markov decision process (CMDP) to formulate
the problem of dynamic coalition formation to solve the
above two issues. We also proposed a basic algorithm called
coalitional Q-learning (CQL) to solve CMDP. Although the
problem considered in this paper can be formulated as a
CMDP, CQL cannot be directly used to solve it. The rea-
son is stated as follows. If we regard the statuses of the
servers and the task set as states, the state space exponen-
tially increases with the number of servers and tasks. CQL
is a tabular method that maintains a table to evaluate each
decision under each state. Thus, a large state space requires
CQL to maintain a table so large that it becomes infeasible.

To resolve the above issues, we first recast the problem
into CMDP as it can well reflect the features of dynamic
coalition formation. At each step of CMDP, the current edge
server statues can be observed, and a coalition structure con-
sisting of several coalitions is determined. Then, each coali-
tion of servers chooses a task (action) to perform coopera-
tively and both statuses of server and task set change accord-

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

DING and LIN: DEEP COALITIONAL Q-LEARNING FOR DYNAMIC COALITION FORMATION IN EDGE COMPUTING

ingly. In the next step, a new coalition structure is decided
to repeat the above process. Unlike ordinary CSG, where
the goal is to maximize the reward in one step, the goal of
CMDP is to optimize the sum of rewards over all steps in
a trajectory. To ensure that CMDP can be applied to large
state spaces, we propose a novel method called deep coali-
tional Q-learning (DCQL). It can well cope with large state
spaces, since it includes a deep neural network, in which
several layers of neural units are progressively constructed
to map the input (state) to an output.
To sum up, our contributions are stated as follows:

e Unlike the static cooperation approaches used in most
studies, we consider a dynamic cooperation approach
for edge computing and formulate it as a CMDP where
the server coalitions can change to suit the dynamic
characteristics of environment.

e Since the basic algorithm to solve CMDP, CQL, can-
not cope with large state spaces, we propose a novel
algorithm called DCQL to handle the scale issue.

e We run experiments that show edge servers can dynam-
ically form coalitions to perform tasks cooperatively.
Experiment results verify that our proposed DCQL al-
gorithm is more effective than CQL, especially in large
state spaces.

2. Motivating Scenario

As shown in Fig. 1, there is an edge computing system
consisting of one centralized coordinator, seven resource-
limited edge servers and a task set consisting of several
tasks. Each task has a different workload and a correspond-
ing number of servers is required to perform the tasks to
satisfy some requirement such as maximum latency. We as-
sume each box represents one unit of workload (e.g., 1000
million CPU cycles) and one edge server can perform just

Task Set

Taski: m !

Fig.1 Dynamic coalition formation in an edge computing system.

865

one unit of workload. For instance, task 2 requires at least
three edge servers to form a coalition to perform coopera-
tively. Moreover, each edge server’s status (defined as edge
server i’s occupancy rate or; € {1%, 2%, ..., 100%} which
is inverse proportion to the number of tasks allocated on it)
is dynamically altered by performing tasks and influences
the task performances. When tasks are executed, the corre-
sponding energy would be consumed. We assume that the
energy consumed by each server is directly related to the oc-
cupancy rate or; and so raising the occupancy rate increases
the energy consumed.

In order to describe this dynamic, the statuses of all
edge servers and the task set are regarded as state s. In each
state, a coalition structure is determined and each coalition
chooses a task to perform. Then, each or; and the task set
would be altered after performing the tasks (corresponds to
a new state). Correspondingly, the coalition structure needs
to be redetermined according to the new state, as is shown
in Fig. 1. Besides energy cost, changing the coalition struc-
ture of servers in edge computing at each step incurs a cost.
That is because, forming a coalition of servers usually re-
quires the participating servers to construct signal channels.
Thus, formation/release of coalitions would need the con-
struction/release signal channels which would incur some
costs. Thus, the goal of the problem is to make the servers
form coalitions to perform all the tasks as soon as possible,
while minimizing both the costs of energy consumed and
changes of coalition structures.

This scenario well reflects the difficulties in dynamic
coalition formation in edge computing: it includes both fea-
tures of dynamic and coalition formation where the coali-
tions should change to suit the state at each step. Moreover,
the state space is huge: the state size exponentially increases
with the number of either edge servers or tasks. For instance,
each server has 100 possible statuses (or;: 0.01 ~ 1 with
scale interval of 0.01), thus three servers has already corre-
sponded to 10% joint statuses.

3. Preliminaries
3.1 Coalition Structure Generation (CSG)

Let us consider a set N = {1,...,n} of agents. A coali-
tion is formed by several agents joining which is denoted as
¢, ie., ¢ € N. Then vy : 2V — R is the characteristic
function used to evaluate the value of a coalition ¢ (2V is
the set of all possible coalitions). Since each agent can only
choose one coalition to join, several disjoint coalitions can
be formed where each way of forming coalitions is called

a coalition structure denoted as cs, i.e., ¢s = {c1,...,Cleq}
that satisfies (Vi # j,c; N c; = 0) A (U ¢; = N). The

goal of CSG is to identify an optimal éolalition structure
cs* that has a maximized sum of all coalition values, i.e.,
CS* = argmax sepn Ye,ces Vena(ci) where PN is the set of all
possible coalition structures. Unlike our proposed CMDP
model, CSG would be finished once the optimal coalition

structure has been found.

866

3.2 Markov Decision Process (MDP)

MDP, a traditional model for discrete time decision-making
process, is often used to model agent’s dynamic behav-
ior[14]. In MDP, a subject that makes a decision is called
an agent and the other subject that is impacted by the agent
is called the environment. The agent observes state s € S
of the environment (S8 is the set of states can be observed),
and takes action a € A from the action set. Then, the envi-
ronment probabilistically transfers to the next state s’ based
on a transition function 7 : S X A xS — [0,1]. Cor-
respondingly, based on the transition of (s, a, s”), the agent
obtains a reward r(s, a, s") determined by reward function
r: SXAxS — R. The agent’s goal is to maximize its
accumulated rewards szl Y Ur(sy, ap, $141) during a period
by learning an optimal policy.

4. Coalitional Markov Decision Process (CMDP)

Since coalitional Markov decision process (CMDP) can well
reflect the issues of dynamic coalition formation, we first in-
troduce CMDP in this section. Then, we state how to formu-
late the dynamic coalition formation problem in edge com-
puting as a CMDP in Sect. 6.

4.1 The Model

Agent and coalition: We consider a set N = {1,...,n} of
agents. Each agent can form a coalition ¢; with other agents
and each agent can only join one coalition. Thus, a way of
coalition formation is called a coalition structure denoted as
cs, e, cs = {al (Vi # jcinc; = 0) AU e = N)).
Then, we use PV = {cs1,..., csgpn)) to denote the set of all
possible coalition structures.

State: We use state s to denote the status of environment
and define a set S = {51, 52, ..., 55} including all possible
states.

Action: We denote A as the action set of coalition c;
where each coalition ¢; chooses an action from A“. We
denote joint action a“® from all coalition actions under a
given coalition structure cs, i.e., @ = a“ X -+ X g%,
Correspondingly, the set of joint action o’ is denoted by
A = A X - X Ak,

Transition function: Based on current state s, the environ-
ment probabilistically transfers to the next state s, after tak-
ing joint action . This probability function, called the
transition function, is denoted as 7 : S X A“ x S — [0, 1],
ie., 7 (s,a, s")=Prob(s’|s, a“).

Reward function: r : S X A X S — R is the reward func-
tion. In this case, what we want to maximize is the sum
rewards from all agents rather than an individual agent’s
reward. The reward function is similar to the characteris-
tic function in CSG which is used to evaluate the values
of different coalitions. However, there are two differences:
1) CSG reflects a static coalition formation process, where it
is solved once an optimal coalition structure is found. Thus,

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.5 MAY 2022

the characteristic function involves only coalitions. How-
ever, in CMDP, there is a dynamic state transition process
during coalition formation; this means an optimal coalition
structure must be identified in each state. Thus, the reward
function should involve both coalition and state. 2) More-
over, in CSG there is no concept of action where the agents
desire only to form coalitions. However, after forming a
coalition from several agents, the coalition must choose an
optimal action from an action set. Thus, the reward function
is related to the state-coalition-action pair rather than a sin-
gle coalition. Moreover, the characteristic function can be
regarded as a special case of reward function when CMDP
consists of only one state and one action.

Cost function: In the process of dynamic coalition forma-
tion, altering the coalition structure would bring correspond-
ing cost, since coalition formation/dissolution in real-world
scenarios usually corresponds to physical activities which
incur some costs like energy which cannot be ignored. Thus,
we define cost : SXPNxSxPN — R as the cost function to
calculate the cost incurred by altering a coalition structure.
Policy: In CMDP, a coalition’s decision-making for choos-
ing an action proceeds in two phases: coalition formation for
all agents and each coalition taking an action. Thus, it corre-
sponds to two types of policies, separately. As the coalition
formation, we define policy 7 : S X PN - [0, 1] to denote
the probability of forming coalition structure cs under state
s, 1.e., (s, cs) = Prob(cs|s). Then, each coalition ¢ can
choose an action from its action set. We collect the actions
from all coalitions which is defined as a“*. Correspondingly,
we define a policy 77 : S x PN x A — [0, 1] to denote
the probability of choosing a joint action under state s and
coalition structure cs.

Objective function: To sum up, we use the tuple
<N,S, A%, T,r,cost> to denote a CMDP. Figure 2 shows
how CMDP formulates a dynamic coalition formation. Un-
der current state s, coalition structure cs is determined based
on policy n°°. Then, based on policy 7%, a joint action a“*
is determined. By implementing a“*, the environment trans-
fers to the next state based on transition function 7 and the
above process is repeated. Finally, we can obtain a trajectory
h = [s[1],es[1],@“°[1], s[2],...,s[T],cs[T], a*[T], s[T +

CSlPNl

Fig.2 The dynamic transition process in CMDP.

DING and LIN: DEEP COALITIONAL Q-LEARNING FOR DYNAMIC COALITION FORMATION IN EDGE COMPUTING

1]] based on that dynamic coalition formation process. Cor-
respondingly, we can obtain the discounted sum return R(h)
of immediate rewards along trajectory A. It is defined as

T
R = "y (sl a[e], e + 1), (1)
t=1

where y € [0, 1) is the discount factor to denote how impor-
tant the rewards obtained in the future are. Unlike ordinary
MDP, the cost of altering coalition structures also needs to
be considered in CMDP which is a discounted sum C(h) of
immediate costs along trajectory i defined as:

T
C(h) = Z yt_lcost(s[t], cslt], slt+ 1], es[t+ 1]). (2)

=1

The goal of CMDP is to learn optimal policies of 7° and 7
that can maximize R(h) and the cost C(h); C(h) is always a
negative number (the bigger the cost of changing cs is, the
smaller the value of cost is). Thus, we use weighted sum
J(h) as the objective function of CMDP which is defined as

J(h) = R(h) + wC(h), 3)

where w is the weight used to evaluate how important the
cost is. Then, the goal changes to identify a couple of
policies 7’ and n* that can maximize the expectation of
weighted sum J(h) along trajectory h as follows.

CS*

7, 1 = arg max E e g [J(M)], 4
e

where E) denotes the expectation over trajectory h
drawn from p™ " (h) which denotes the probability density
of observing trajectory 4 under policies 7°° and 7.

Compared with ordinary MDP, there are two major dif-
ferences: 1) each coalition as an entity takes an action rather
than an agent. This means that forming different coalitions
corresponds to a different action set, which is more compli-
cated than the fixed action set of ordinary MDP. 2) it does
cover the concept of coalitions and altering coalition struc-
tures incurs a certain cost for pair (s, cs, s, cs”) that cannot
be evaluated by the reward function of naive MDP which
is based on (s,a,s’). Thus, we define a cost function to
evaluate the cost incurred by altering the coalition structure.
Since CMDP is not a naive MDP, it requires us to propose a
new algorithm that can handle its specific properties.

4.2 The Equivalent Policy

Since it is hard to do an optimization with considering both
the policies 7° and 7* meanwhile, we consider to construct
an equivalent policy by using their relationship. Specifically,
policy * usually makes a decision after that coalition struc-
ture cs is determined by 7, thus we can regard cs as a con-
dition of 7*. We thus construct equivalent policy 7°¢ which
is defined by

7 Sx A - [0,1],

867

where AU = | ,epn A includes joint actions from all
possible coalition structures (@ € A4 Thus, 7%(s, @)
is the probability of choosing joint action a from A
under state s. Based on the relationship 7°(s,a) =
(s, cs)m(s, cs, a%), both policies 7°° and n“ can be de-
rived from 74(s, @) as follows.

n(s,c8) = Z n(s,),

€A

5
o esn [Dareses T(s, a)]n(s, @))
n%(s,cs,a) =
D e (s, @)
Thus, the optimal policy 7¢¢* is defined by
7" = arg max E e, [J(h)]. (6)

4.3 The Value Functions

In the MDP, state-action value Q(s, a) is often used to eval-
uate the quality attained by taking action a under state s.
Then, an optimal policy can be obtained based on the value
0(s,a) (Q-value). Besides the reward, the cost of alter-
ing coalition structures also exists in CMDP. Thus, we
need to consider two Q-value functions to evaluate the re-
ward and cost, separately. We define the Q-value function
0 S x AU — R used to evaluate the rewards which is
called state-action value function for reward, as

Q' (s, @) = E oy [R(H) | s[1] = s5,[1] = a],

where Q' (s, @) is the expected rewards obtained by follow-
ing policy 74 under the condition of “s[1] = s, a[1] = a”.
By recursion, we can rewrite Q’(s, @) as follows.

O'(s,a) = Z T (s, a, s’)[r(s, a,s)
seS

+y Z 7(s’,a)O' (s, a/’)].

o’ e Al

)

We define the Q-value function Q¢ : S x A% — R~
used to evaluate the cost of altering coalition structures,
which is called as state-action value function for cost, as

0°(s, @) = E ey [C(M)s[1] = 5,a[1] = 2],

where Q°(s, @) is the expected cost obtained by following
policy 7*¢ under the condition of “s[1] = s, [1] = @”. By
recursion, we can rewrite Q°(s, @) as follows.

0°(s,a) = Z T(s,a, s’)[Z 7(s,cs’)
s€S cs'ePN

3
cost(s,cs,s’,cs’) +y Z 7l(s",)0 (", a")|.

' €Al

Since the objective function J(h) consists of both R(k) and
C(h). We also consider a Q-value to evaluate J(#) which is

868

defined as weighted state-action value function. By calcu-
lation, it can be written in terms of Q" and Q¢ as follows.

0“(s,a) = Q' (s, @) + wQ (s, @). 9
Based on Egs. (7) and (8), Q“(s, @) can be written as

() = Y T(5,08)|r(s.)
s'E€S
+w Z 7(s’, cs')cost(s,cs, s, cs’)

cs'ePN

+y Z ﬂ_eq(s/,a/)Qw(S/,a,/) ,
o’ €Al

(10)

where Q“(s, @) includes both terms of reward r(s, @, s”) and
cost cost(s,cs, s’,cs’). We can solve Q“(s, @) to obtain an
optimal policy that maximizes J(h).

5. Algorithm

As illustrated in the above section, CMDP cannot be solved
by the classical algorithms developed for solving MDP. We
first introduce a basic solution called coalitional Q-learning
(CQL) as first seen in [13]. Then, we introduce our proposed
method DCQL in this paper which can handle a larger state
space than CQL.

5.1 Coalitional Q-Learning (CQL)

Q-learning, is a classical algorithm that can guide agents in
learning an optimal Q-value for decision-making [15]. We
refer to the framework of Q-learning and consider the fea-
tures of CMDP to propose an algorithm called coalitional
Q-learning (CQL) to solve CMDP in [13]. First, based on
Eq. (10), we further introduce an optimal weighted state-
action value function Q“* by applying a maximization op-
erator which is defined as follows

0" (s,0) =) T(s,a,5)

s'eS
[r(s, @, s”) + max {wcost(s, cs, s, es @) + Y0¥ (s, a)Hll,
o

(1)

where ¢s~! @ AU — PN i a function to obtain the cs

given as a“. In Q-learning algorithm, there also exists a
maximization operator to choose the maximized Q-value of
next state to update the Q-value of current state. However,
in Eq.(11), the maximization operator needs also to con-
sider the corresponding cost of changing coalition structures
rather than only Q-value, as shown in Fig. 3.

In the CQL algorithm, the value of Q“* are updated as
follows.

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.5 MAY 2022

cost(s, csq,s’, csy)

CS,
Y1 cost(s,csq, 8", €s)pN))
1

cs, <0

1PN
{ : A maximization operator

O'|551|
max{wcost (s, cs,s’,cs "t (a’)
ar
05, a))

Q" (s,@)

Fig.3 The definition of optimal weighted state-action value function.
Unlike Q-learning where the maximization operator only considers Q-
value, the maximization operator of CQL needs also to consider the cor-
responding cost of changing coalition structures rather than only Q-value.
As shown in the right part, the cost will be zero if the coalition structure
does not change, the cost corresponds to a negative value otherwise.

Q" (s[t], alt]) « Q“*(s[t], a[t]) + o[r[t + 1]
+ max {wcost(s[t], est], s[t + 1], es @) (12)

+y0” (slt + 11,)} = Q" (slt], el1D)],

where o is the learning rate.
5.2 Deep Coalitional Q-Learning (DCQL)

Coalitional Q-learning is based on a tabular RL method
which demands maintenance of a Q-table. Although tabular
RL methods have good performance in many RL tasks, it be-
comes impractical for RL tasks with large state spaces since
it is hard to maintain a huge table. For instance, in our moti-
vating scenario, the state would increase with the number of
tasks in the task set. To tackle this problem, we refer to deep
RL (DRL) algorithms which combine deep neural networks
with reinforcement learning. They have been verified as ca-
pable of dealing with large state spaces. Deep Q-network
(DQN), is a classical DRL method proposed by Volodymyr
et al. [16]; a neural network is used to approximate the value
of Q(s,a). Inspired by the idea of DQN, we improve CQL
and propose a novel algorithm called DCQL for CMDP with
large state space. Specifically, the optimal weighted state-
action value Q“* is calculated by a deep neural network. It
uses the tuple of (s}, a;, r;j, cost}, sj+1) obtained at each step
to train the network with the goal of minimizing the follow-
ing loss equation.

L(0) = Byaun| (g - 0 (s)> 03 0))%], (13)
where

_ {rj + wcost; if 5,1 is terminal state,
;=

rj +ymaxy (weost; + Q“*(sj,1,a';6)) otherwise.
where 0 represents the parameters of the neural network.
Further, we use the motivating scenario in Sect.2 to
illustrate DCQL, see in Fig.4. The statuses of all servers
and task set are regarded as a state which allows DCQL to
output each action’s Q“* value. Based on the Q“* value,

DING and LIN: DEEP COALITIONAL Q-LEARNING FOR DYNAMIC COALITION FORMATION IN EDGE COMPUTING

Get reward based on the
transition (s[t], «[t], s[t+1])

Choose an action a[t]

Get cost by comparing cs[t-1]: a0 Q"‘
at ot
O d based on the Q-value

with previous cs

state:s[t] ‘ i
L

or=70%

(acia)
Oastola

Task Set

Task3:
Task4: ammm
Task5: m

nput laye:

Fig.4 The framework of deep coalitional Q-learning.

an action is chosen and the state transfers to the next state.
Then, we can obtain the reward and cost to train this network
through minimizing the loss function defined by Eq. (13).

Then, we analyze the computation time of DCQL algo-
rithm with the CQL algorithm. Both algorithms consist of
two phases: learning phase and executing phase.

e 1) Learning phase: DCQL algorithm trains a deep neu-
ral network by back propagation based on Eq.(13).
CQL algorithm maintains a Q-table and updates the Q-
values for each state-action pair based on Eq. (12).

e 2) Executing phase: DCQL algorithm inputs the cur-
rent state and outputs the corresponding Q-values for
each action by performing forward propagation. Then
it chooses an action based on the Q-values. CQL al-
gorithm searches for the Q-values corresponding to the
current state in the Q-table and chooses an action based
on the Q-values.

Although DCQL algorithm incurs a longer calculation time
than the CQL algorithm in the learning phase, they take sim-
ilar time to choose an action in the executing phase. In ac-
tual experiments, we care only about the executing phase
once it has been trained well. Specifically, DCQL is given
by Algorithm 1.

6. Evaluation

In this section, we run the experiments of dynamic coalition
formation problem in edge computing to verify the effec-
tiveness of our proposed DCQL algorithm.

6.1 Evaluation Setting

We refer to related papers [12], [17]-[20] to define the pa-
rameters of the following edge computing systems. And
also, we make some simplifications which do not degrade
the validity of our model. The specific setting is stated as
follows.

Server: DCQL aims to solve a large state space problem
in this paper. Since each server has 100 statuses of CPU

869

Algorithm 1 Deep Coalitional Q-learning (DCQL)
1: Initialize replay memory D
2: Initialize weighted action-value function Q“* with random weights 6
3: for episode m=1, M do

4. Generate initial state s[1]
5 for step r =1, T do
6: Randomly select an action «[¢] from A (s[1]) based on an &-
greedy policy
7: otherwise select
8: off] = arg max{wcost(s[t — 1],es[t — 11,s[1],es” (@) +
o

YO« (sl1], a’;)}

9: Execute action «[f] and observe reward r[f] = r(s[t], a[t], s[t+1])
and cost cost[t] = cost(s[t — 1], cs[t — 1], s[t], cs[t]) , and then
transfer to the next state s[¢ + 1]

10: Store transition (s[t], a[t], r[t], cost[t], s[t + 1]) in D and
set s[t] = s[r+ 1]

11: Sample random mini-batch of transitions (s;,a;, r;, cost;, sj1)
from D

12: Calculate y; based on Eq. (13) and perform a gradient descent
step to update 6

13: end for

14: end for

occupancy rate, it corresponds to 10° joint statuses even if
only 3 edge servers are considered. Thus, we take an edge
computing system composed of 3 edge servers. We define
the set of servers as SV = {svy, sv,, sv3} where each server’s
parameter is denoted by the vector

sv; = [ory, ¢, kil, (14)

where or; is the CPU occupancy rate, c; is server i’s coeffi-
cient about CPU speed (e.g., workload performed per CPU
cycle), k; is server i’s server i’s coefficient about energy cost
(e.g., energy consumed per CPU cycle) which can be calcu-
lated by the measurement method stated in [18]. Although
the parameter values can be set based on some physical
servers like Raspberry Pi, it would not influence the effec-
tiveness of our proposed method. Thus, we set each server
as ¢; = 1 and k; = 1 for simplicity.
Task: As for setting the task set, we refer to [12], [17] to de-
note CPU cycles as the task workload. Although some other
task parameters like RAM and Disk can also be considered,
we ignore them for simplicity and focus on workload in this
paper. That is because high workload has already well re-
flected the necessity of dynamic coalition formation and ig-
noring the other parameters does not degrade the validity of
our model. We consider several task sets with different num-
ber of tasks and three types of tasks with workload: 1000,
2000 and 3000 million CPU cycles, separately. We assume
1000 million CPU cycles as a unit workload and it can be
allocated to only one server at a time. For instance, a task
with 2000 million CPU cycles requires two servers. Then,
the server can execute the tasks in parallel by applying a
time-slice mechanism. Without loss of generality, the num-
ber of each type task is randomly generated in each task set.
Each episode is concluded when all tasks in the task set have
been completed.

Then, we formulate the problem as a CMDP and the
corresponding elements of CMDP in this problem are given

870

as follows.

State: The dynamic of edge computing is represented as
state transition. Since the dynamic is driven by the fac-
tors of server status and task set status, we construct the
state s[] at step ¢ by including or;[f] from all servers at
step ¢ and the current task set status at step ¢, i.e., s[t] =
[[or![1], 0r?[t], or3[£]], [[£], n™2[£], n"¥*[£]]], where ty;is j
type tasks whose workload includes j units and n'/ repre-
sents the number of type ty; tasks left in the task set.
Action: In CMDP, at each step the entity choosing the ac-
tion is the coalition, thus we denote A as the action set of
each coalition c. In this case, A is the set of tasks that edge
coalition c is capable to execute which also includes the ac-
tion to choose no tasks, i.e., a“ = 0. Thus, the coalition
action set is defined by

A ={ty; | j = Icl} U{O}.

Reward function: The goal is to perform all the tasks as
soon as possible while minimizing the cost of energy con-
sumption and the cost incurred by coalition structure alter-
ation. Thus, when all tasks have been performed, a large
positive reward is given. Specifically, the reward function is
defined as follows.

—energy(s,s’) + 100, if s’ is absorb state,

r(s,a,s’) = {

—energy(s, s’), otherwise.

where 100 is the reward of absorb state in which all tasks
have been accomplished, energy(s, s”) is the server energy
consumed in performing the tasks; we refer [19] to define it
as

energy(s, s’) = Z k; * or;. (15)

Then we refer [20] to approximate server i’s occupancy rate
or; by the task number 7a, allocated on server i which is
given by or; = té“ - where ta,,,, is the maximum task num-
ber can be allocated on it (we assume fa,,,, = 100 in this
paper).

Cost function: As for calculating the cost of changing coali-
tion structure, we assume it is determined by the number of
changes in agent relationships. Specifically, we use an undi-
rected graph to describe a coalition, thus a coalition struc-
ture can be represented as several undirected graphs. In an
undirected graph, each agent is represented as a node and
any two agents can share one edge. Then, altering the coali-
tion structure means adding/deleting edges of the undirected
graphs. Thus, the cost of altering a coalition structure can be
calculated by the number of edge changes. First, we define
set N to describe each agent’s neighborhood (the members
in the same coalition) which is defined by

NG = (Ng(0) = (kk.i € cj € s Nk # i) | Vi €).

Then we consider set NgN which includes all possible N7,
ie. NZ;)N = (NG, N2, .. ,N;Y"’N‘}. Furthermore, we intro-
duce function D : NgN xNé’N — R to quantify the difference

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.5 MAY 2022

between two coalition structures, as defined by
DING. N§') = 5 Z | N$Gy o NE s

where A is symmetric difference calculation used to eval-
uate the number of edges altered. Thus, the cost of alter-
ing coalition structures can be represented by the value of
D(N¢, Ngsl). We define cost function cost as the inverse
number of D(NS, N&') as follows

cost(s,cs,s',cs’) = =D(N§', N§").

6.2 Evaluation Results

We check the performances of our DCQL algorithm by com-
paring it with the CQL algorithm. We set the same hyper-
parameters for all algorithms with @ = 0.01 and y = 0.9. We
consider task sets consisting of 5 tasks, 10 tasks, 15 tasks
and 20 tasks. For each task set setting, we ran the following
simulations for 100 episodes and each episode’s maximum
step is 100 (the episode is terminated even though some
tasks in the task set are not executed); the results are shown
in Fig. 5. As shown in Fig. 5 (a), since the task set has 5 tasks
which corresponds to a small state space, CQL can learn
effectively and matches the performance of DCQL. How-
ever, CQL cannot learn effectively when the task number
increases which corresponds to a large state space, as shown
in Fig. 5 (b)-(d). DCQL has better performances than CQL
since it can cope with large state spaces well.

In order to compare these two algorithms visually, we
focus on the final learning results (the average of the last 10
episodes) for all four task sets. With the increase of task
number, it would naturally cost more steps to get the ab-
sorb state (all tasks have been executed completely). Corre-
spondingly, the optimal value of J(#) would decrease since

o

(b) The number of tasks: 10

2u NMMN/M
g
o

a
g

0 20 0 6 100

Episodes

(a) The number of tasks: 5

ind Cost:
ind Cost:

J(h): Discounted Sum of Rewards a

0 20 4
Episodes

(c) The number of tasks: 15

20 4

(d) The number of tasks: 20

Fig.5 Comparing the performances of deep coalitional Q-learning with
coalitional Q-learning.

DING and LIN: DEEP COALITIONAL Q-LEARNING FOR DYNAMIC COALITION FORMATION IN EDGE COMPUTING

lel

01 — Deep Coalitional Q-learning
Coalitional Q-learning

J(h): Discounted Sum of Rewards and Costs
w

5 10 15 20
Maximum of Task Number

Fig.6 Comparing the final learning results of deep coalitional

Q-learning with coalitional Q-learning.

taking more steps to get the absorb state corresponds to a
smaller discount value of y'~! based on Egs. (1)~(3). Thus,
the J(h) value of DCQL naturally decreases with the in-
crease of task number, even though it can learn an opti-
mal solution in each task set. Then, DCQL’s superiority
over CQL majorly depends on the CQL’s performance. As
shown in Fig. 6, the percentage improvements attained by
our method over CQL are 9.1%, 101.3%, 25.1 times, 26.1
times for the task sets with task numbers of 5, 10, 15 and 20.
When the task number increases from 5 to 15, CQL’s per-
formance decreases quickly since a large state space prob-
lem is incurred. Thus, DCQL’s superiority over CQL in-
creases quickly. However, there exists a lower-bound of
J(h) value which corresponds to a worst case: the algo-
rithm almost learns nothing and so the tasks are rarely exe-
cuted. We terminate the episode once the maximum step is
reached, thus J(&) would not go to negative infinity with the
increase of task number even though in the worst case. In
task sets with 15 and 20 tasks, we can see CQL has the sim-
ilar performances that can almost learn nothing (confirmed
by Fig. 5 (c)(d)), which are close to the lower-bound of J(h)
value. Thus, DCQL’s superiority over CQL increases slowly
when the task number increases from 15 to 20.

6.3 Discussion

Scale of edge servers: To summarize the above experi-
ments, our proposed algorithm offers an effective solution
to dynamic coalition formation problem in edge computing.
In this paper, we focus on solving the problem of large state
spaces rather than large action spaces. Thus, we consider
the case of a fixed number of edge servers that corresponds
to a large state space and a small action space. Specially,
the action space scale mainly depends on the number, B, of
coalition structures which is called Bell number. B, expo-
nentially increases as the number of servers which is calcu-
lated by Bi+1y = 2o (Z)Bk. Currently, DCQL cannot cope
with large action spaces, since DCQL is based on a DQN
algorithm that is effective only in small action spaces. How-
ever, the scale of edge servers is also an important factor
for real-world deployment. Our future work is to improve

871

DCQL so that it can handle large action spaces.
Real-world deployment: Although this paper confirms ef-
fectiveness of our proposal by only running simulations, it is
also practical to permit real deployment. Specifically, CPU
statuses can be monitored by the methods in [21] and the
task workload can be obtained using the method in [22].
Moreover, the parameter values can be set based on the
physical servers like Raspberry Pi. Actually, there could
be some gaps from the model to the actual physical servers
such as communication delay and the computation resource
limitations which cannot be ignored; thus, we intend to
tackle these gaps in our future work.

7. Related Work

The cooperation problem in edge computing has been ex-
amined in many studies. Cao et al. [5] consider mobile edge
computing systems with the aim of improving the energy
efficiency for latency-constrained computation. They set a
server as helper and allow other edge servers to offload com-
putation tasks to the helper which cooperatively computes
these tasks. Zhang et al. [7] consider a joint computation and
communication user cooperation problem in edge comput-
ing, where one user can share its own computation resources
with the others to improve overall user performance. Yuan
et al. [8] consider a cooperative edge computing platform
among different stakeholders and propose a blockchain sys-
tem based method to solve the issues of trust and incentive
among edge servers. Although the above studies consider a
cooperation setting in edge computing, they are based on a
static cooperation way which is unlikely to well support the
dynamic environments expected in edge computing.

As for the dynamic coalition formation problem, our
previous work [4] considers this problem, but it uses only
a naive MDP that ignores some coalition features like the
cost of changing the coalition structure. Then, in [13], we
proposed CMDP to overcome this deficiency as well as a
basic solution of CQL. To handle the large state spaces in
edge computing, we propose a DCQL algorithm in this pa-
per. Although, there are some related studies that combine
MDP with coalition formation [23], [24], they treat it as a
repeated CSG with multiple-stages rather than a dynamic
Markov transition process. Thus, these works do not con-
sider the dynamic coalition formation problem essentially.

8. Conclusion

This paper studied a cooperation problem in edge comput-
ing. We proposed a new cooperation approach by guiding
the edge servers to dynamically form coalitions to perform
tasks cooperatively. We addressed its issues and formulated
it by a theoretic model called CMDP. Since, the basic so-
lution of CMDP, CQL, cannot handle the large state spaces,
we proposed a novel algorithm called DCQL to solve it and
verified its effectiveness in different experiment settings.

872

Acknowledgments

This research was partially supported by a Grant-in-
Aid for Scientific Research (B) (21H03556, 2021-2024),
and a Grant-in-Aid for Challenging Exploratory Research
(20K21833, 2020-2023) from the Japan Society for the Pro-
motion of Science (JSPS).

References

(1]

(2]

(3]

(4]

[3]

(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Li and J. Huang, “Energy efficient resource management and task
scheduling for IoT services in edge computing paradigm,” IEEE In-
ternational Symposium on Parallel and Distributed Processing with
Applications, pp.846-851, 2017.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol.3, no.5, pp.637-646,
2016.

X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation
and communication cooperation for energy-efficient mobile edge
computing.” IEEE Internet Things J., vol.6, no.3, pp.4188-4200,
2019.

S. Ding and D. Lin, “Dynamic task allocation for cost-efficient edge
cloud computing,” IEEE International Conference on Services Com-
puting, pp.218-225, 2020.

X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation
and communication cooperation for mobile edge computing,” 16th
International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks, pp.1-6, 2018.

Y. Li, G. Xu, J. Ge, X. Fu, and P. Liu, “Communication and compu-
tation cooperation in wireless network for mobile edge computing,”
IEEE Access, vol.7, pp.106260-106274, 2019.

Y. Yu, J. Zhang, and K.B. Letaief, “Joint subcarrier and CPU time
allocation for mobile edge computing,” IEEE Global Communica-
tions Conference, pp.1-6, 2016.

L. Yuan, Q. He, S. Tan, B. Li, J. Yu, F. Chen, H. Jin, and Y. Yang,
“CoopEdge: A decentralized blockchain-based platform for cooper-
ative edge computing,” Proc. Web Conference, pp.2245-2257, 2021.
G. Greco and A. Guzzo, “Constrained coalition formation on val-
uation structures: Formal framework, applications, and islands of
tractability,” International Joint Conference on Artificial Intelli-
gence, pp.5612-5616, 2018.

T. Rahwan and N. Jennings, “Coalition structure generation: Dy-
namic programming meets anytime optimisation,” Proc. Twenty-
Third AAAI Conference on Artificial Intelligence, pp.156-161,
2008.

T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé,
“Coalition structure generation with worst case guarantees,” Artifi-
cial Intelligence, vol.111, no.1-2, pp.209-238, 1999.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans.
Netw., vol.24, no.5, pp.2795-2808, 2015.

S. Ding and D. Lin, “A coalitional Markov decision process model
for dynamic coalition formation among agents,” IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent
Agent Technology, pp.308-315, 2020.

M.L. Littman, “Markov games as a framework for multi-agent re-
inforcement learning,” Machine Learning Proceedings, pp.157-163,
1994.

C.J.C.H. Watkins and P. Dayan. “Q-learning,” Machine Learning,
vol.8, no.3-4, pp.279-292, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G.
Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D
Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level con-
trol through deep reinforcement learning,” Nature, vol.518, no.7540,

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

\ | MM

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.5 MAY 2022

pp.529-533, 2015.

X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with edge
computing in IoT networks via machine learning,” IEEE Internet
Things J., vol.7, no.4, pp.3415-3426, 2020.

Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile applica-
tion execution: Taming resource-poor mobile devices with cloud
clones,” IEEE International Conference on Computer Communica-
tions, pp.2716-2720, 2012.

F. Armenta-Cano, A. Tchernykh, J.M. Cortés-Mendoza, R.
Yahyapour, A.Y. Drozdov, P. Bouvry, D. Kliazovich, and A.
Avetisyan, “Heterogeneous job consolidation for power aware
scheduling with quality of service,” Russian Supercomputing Days
2015, pp.687-697, 2015.

H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Trans. Com-
put., vol.53, no.5, pp.584-600, 2004.

C. Ludmila and R. Gardner. “Measuring CPU overhead for I/O pro-
cessing in the Xen virtual machine monitor,” USENIX Annual Tech-
nical Conference, General Track, vol.50, pp.387-390, 2005.

L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A frame-
work for partitioning and execution of data stream applications in
mobile cloud computing,” ACM SIGMETRICS Performance Eval-
uation Review, vol.40, no.4, pp.23-32, 2013.

G. Chalkiadakis and C. Boutilier, “Bayesian reinforcement learning
for coalition formation under uncertainty,” Proc. Third International
Joint Conference on Autonomous Agents and Multiagent Systems,
vol.3, pp.1090-1097, 2004.

G. Chalkiadakis, E. Markakis, and C. Boutilier, “Coalition forma-
tion under uncertainty: Bargaining equilibria and the Bayesian core
stability concept,” Proc. 6th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp.1-8, 2007.

Shiyao Ding is a Ph.D. student in infor-
matics from Kyoto University, Japan since Oc-
tober 2019. He received the Master degree in
engineering from Osaka University, Japan in
September 2019. His current research interests
include reinforcement learning, multiagent sys-
tems, services computing, Internet of Things,
edge computing and cloud computing.

Donghui Lin received the Ph.D. degree
in informatics from Kyoto University, Japan in
2008. He was a researcher at National Insti-
tute of Information and Communications Tech-
nology (NICT), Japan in 2008-2011. He then
] joined, in 2012, the Department of Social In-
. \ formatics of Kyoto University, where he is an
/ ((o associate professor since 2018. His current re-

I }]H ”r search interests include services computing, In-
N /\\ W\H I ternet of Things, multiagent systems, and inter-
cultural collaboration. He was a recipient of the

e

2012 Achievement Award of the Institute of Electronics, Information and
Communication Engineers (IEICE), Japan. He has been serving as a pro-
gram committee member for major international conferences in the areas
of services computing and multiagent systems, including IEEE SCC and
AAMAS. His papers appear in major international conferences like IEEE
SCC, IEEE ICWS, ICSOC, and journals including IEEE TSMC, ACM

TAAS,

and ACM TALLIP.

http://dx.doi.org/10.1109/ispa/iucc.2017.00129
http://dx.doi.org/10.1109/jiot.2016.2579198
http://dx.doi.org/10.1109/jiot.2018.2875246
http://dx.doi.org/10.1109/scc49832.2020.00036
http://dx.doi.org/10.23919/wiopt.2018.8362865
http://dx.doi.org/10.1109/access.2019.2933037
http://dx.doi.org/10.1109/glocom.2016.7841937
http://dx.doi.org/10.1145/3442381.3449994
http://dx.doi.org/10.24963/ijcai.2018/795
http://dx.doi.org/10.1016/s0004-3702(99)00036-3
http://dx.doi.org/10.1109/tnet.2015.2487344
http://dx.doi.org/10.1109/wiiat50758.2020.00044
http://dx.doi.org/10.1016/b978-1-55860-335-6.50027-1
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/jiot.2020.2970110
http://dx.doi.org/10.1109/INFCOM.2012.6195685
http://dx.doi.org/10.1109/tc.2004.1275298
http://dx.doi.org/10.1145/2479942.2479946
http://dx.doi.org/10.1145/1329125.1329203

