
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.9 SEPTEMBER 2007
1335

PAPER Special Section on Software Agent and Its Applications

Interorganizational Workflow Execution Based on Process Agents
and ECA Rules

Donghui LIN†a), Huanye SHENG††, Nonmembers, and Toru ISHIDA†, Member

SUMMARY Flexibility, adaptation and distribution have been regarded
as major challenges of modern interorganizational workflow. To address
these issues, this paper proposes an interorganizational workflow execu-
tion framework based on process agents and ECA rules. In our framework,
an interorganizational workflow is modeled as a multiagent system with a
process agent for each organization. The whole execution is divided into
two parts: the intra-execution, which means execution within a same or-
ganization, and the inter-execution, which represents interaction between
organizations. For intra-execution, we use the method of transforming the
graph-based local workflow into block-based workflow to design general
ECA rules. ECA rules are used to control internal state transitions and
process agents are used to control external state transitions of tasks in the
local workflows. Inter-execution is realized by process agent interaction
protocols. The proposed approach can provide flexible execution of in-
terorganizational workflow with distributed organizational autonomy and
adaptation. A case study of offshore software development is illustrated for
the proposed approach.
key words: interorganizational workflow, ECA rules, workflow execution,
process agent

1. Introduction

Workflow management [13] has been widely adopted as an
important technology to manage business processes. In re-
cent years, with the global expansion of distributed com-
puting environments, computer mediated collaboration has
been increasing among organizations. In such cases, interor-
ganizational workflow is expected to be created to cross or-
ganizational boundaries inside an enterprise or between en-
terprises [1].

There are several major problems in managing interor-
ganizational workflow. For example, flexibility and adap-
tation are challenging issues [2], especially when the execu-
tion is across organizations. Existing workflow management
systems (WfMS) do not effectively address issues related
to environments distributed across organizations. A central
and monolithic workflow engine as suggested by Workflow
Management Coalition (WfMC) reference model [13] is not
sufficient to support the autonomy of enterprises. Multia-
gent system provides distributed platform, which has been
regarded as a promising approach to solving many prob-
lems in workflow management [12]. However, it is rarely

Manuscript received November 30, 2006.
Manuscript revised March 22, 2007.
†The authors are with the Department of Social Informatics,

Kyoto University, Kyoto-shi, 606–8501 Japan.
††The author is with the Department of Computer Science and

Engineering, Shanghai Jiao Tong University, HuaShan Road 1954,
Shanghai, 200030, China.

a) E-mail: lindh@ai.soc.i.kyoto-u.ac.jp
DOI: 10.1093/ietisy/e90–d.9.1335

discussed in previous research that how to use agent technol-
ogy to achieve the goal of supporting distribution and flexi-
bility with adaptation and autonomy for interorganizational
workflow execution.

To address these issues, this paper proposes a frame-
work for interorganizational workflow execution based on
Event-Condition-Action (ECA) rules and process agents.
The whole interorganizational workflow is modeled as mul-
tiagent system with a process agent for each organization.
Therefore, process agents of organizations preserve auton-
omy of organizations with flexibility. We design general
ECA rules to make workflow execution automatic with
adaptation for different organizations. The framework will
provide effective execution mechanisms for interorganiza-
tional workflow.

In the proposed framework, we divide the interorga-
nizational workflow execution process into two parts: the
intra-execution, which means execution within a same or-
ganization, and the inter-execution, which represents inter-
action between organizations. The intra-execution is dis-
tributed among organizations. Within each organization,
there is an engine where a set of general ECA rules is de-
fined for executing the internal workflow process. We use
a method of transforming the graph-based workflow model
into block-based workflow model [4], [10] to derive general
rules from blocks. The execution of local workflow pro-
cesses is controlled and monitored by process agents and
rules. Rules are designed to control internal state transitions
and process agents are used to control the external state tran-
sitions of tasks. Process agent of each organization interacts
with that of other organizations to fulfill the inter-execution.
Protocols are used to handle interactions, which involve all
the organizations that have interaction with each other to ad-
dress specific purposes.

This paper is organized as follows: Sect. 2 introduces
related work. The overview of our approach is proposed
in Sect. 3. Section 4 describes derivation of ECA rules. In
Sect. 5, we explain process agent for controlling local work-
flow process and interacting among organizations. Section
6 is a case study and discussion of the proposed approach,
followed by the conclusion in the last section.

2. Related Work

ECA rules have been used for workflow execution in previ-
ous research. Casati et al. design various rules for workflow
management using patterns and propose a classification of

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

1336
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.9 SEPTEMBER 2007

the rules [5], and present an approach of handling exception
using ECA rules [6]. In [4], an automatic control mecha-
nism of workflow execution is proposed, which combines
traditional workflow process model and ECA rules to derive
a general process control method. Those researches have
demonstrated that ECA rules can control workflow automat-
ically and deal with internal exceptions as well. Using ECA
rules, workflow can be easily represented into executable
forms. However, they mainly focus on internal process con-
trol and cannot provide flexibility in controlling task execu-
tion. Moreover, their approaches cannot deal with the issue
of interorganizational workflow execution which this paper
addresses.

Multiagent technology has been used in different ways
in workflow management [12], e.g., to fulfill particular roles
that are required by different tasks, to serve as part of the
infrastructure associated with WfMS. There is also some
work that concentrates on agent negotiation between organi-
zations [3], however, how negotiation would affect the local
workflows is not discussed. Different from existing work,
our agent-based approach is combined with rule-based ap-
proach to deal with both control and monitor of tasks within
organizations, and interaction among organizations.

3. Overview of the Framework

In previous research, van der Aalst proposes several types
of workflow interoperability [1], among which the loosely
coupled interorganizational workflow is common in the real
world. The model that we discuss is based on loosely cou-
pled interoperability, where the whole interorganizational
workflow is made up of local workflows, which may be ac-
tive in parallel over different organizations. We represent
the interorganizational workflow model by using workflow
graphs which provide a visual means for users to understand
the semantics of the workflow process easily. A graph-based
interorganizational workflow model is shown in Fig. 1 by the
example of offshore software development. There are two
organizations, the outsourcer (a Japanese company) and the
supplier (a Chinese company). There is a local workflow for

Fig. 1 Graph-based interorganizational workflow model: an example of offshore software
development between a Japanese company (the outsourcer) and a Chinese company (the supplier).

each organization, which represents the process by tasks and
the relations among the tasks, such as sequential relation,
parallel relations (represented by AND-split and AND-join),
iterative relation and so on. A complete workflow includes
the detailed description of tasks, such as task executors (hu-
man, application or services), related data, scheduling and
so on.

Figure 2 shows the overall conceptual framework of the
execution mechanism of interorganizational workflow by
our approach. The execution mechanism is divided into two
parts: the intra-execution, which means the workflow exe-
cution within a same organization, and the inter-execution,
which represents the workflow execution (interaction) be-
tween organizations. The following three modules are in-
cluded in intra-execution, among which the workflow pro-
cess execution control module is the core issue of this re-
search.

Workflow process definition and instance module. Pro-
cess definition creates workflow schema. A process instance
is the execution representation of a process and is created
based on the process definition. A graph-based workflow
editor can be used for workflow definition.

Workflow process execution control module. The exe-
cution of the workflow process instances is controlled by the
process agent and ECA rules. We use ECA rules to describe
all the state transitions of the tasks (e.g., ready, running,
suspended, committed and so on) in the workflow process
instance. Therefore, the workflow process can be automati-
cally executed according to the ECA rules. The execution of
a rule in the ECA rule engine means a step of state change of
a certain task and the whole process instance. An ECA rule
is executed while the engine is triggered by an event under a
certain condition, e.g., during the execution of the workflow
process, the start of a task is always triggered by the exe-
cution completion of its predecessor task. Events in ECA
rules include internal events that can directly trigger rules in
the engine, and external events such as the start of a process
instance, the success of executing a task and so on. We con-
trol the external events by the process agent. The process
agent keeps the information of the execution status of the

LIN et al.: INTERORGANIZATIONAL WORKFLOW EXECUTION BASED ON PROCESS AGENTS AND ECA RULES
1337

Fig. 2 The overall framework of interorganizational workflow execution,
including intra-execution and inter-execution.

process instance by tracing the execution of ECA rules and
monitoring the execution of tasks.

Task execution and monitor module. Tasks in workflow
process instances are executed by some roles. The process
agent dispatches a task when it gets the information that the
task is ready for execution, and monitors the whole execu-
tion process of the task by interacting with human, applica-
tions or services (or their agents). By monitoring task ex-
ecution, the process agent can get external events and then
send such events to the ECA rule engine to trigger some new
events.

As for inter-execution, interaction between process
agents of the organizations is used. When process instance
execution of an organization comes to an interaction point
with another organization, the process agents of the two or-
ganizations interacts with each other to control the execu-
tion.

4. ECA Rules for Workflow Execution

Workflow execution can be described by task state transi-
tions. Basic task states include Disabled, Ready, Running,
Committed, Aborted and Suspended. The initial state of a
task is Disabled, which is changed into Ready when its pre-
decessor finishes execution, and then is further changed into
Running if all conditions for execution are satisfied. After
the successful execution of the task, its state turns into Com-

Fig. 3 ECA rules and workflow execution.

mitted. The state of a task can also be Aborted if it is aborted
due to some failures, or Suspended if it is suspended. The
transitions of the tasks can be totally represented and ex-
ecuted automatically by ECA rules. ECA rules, with the
form ”on event if condition do action” specify to execute
the action automatically when the event happens, provided
the condition holds. As is shown in Fig. 3, we have an ECA
rule engine which contains a set of rules based on the state
transition of tasks for each organization.

In the approach we present in this paper, we first create
graph-based interorganizational workflow, through which
each organization can understand the workflow process.
Further, a set of ECA rules are established based on the
graph-based workflow as a rule engine which describes and
conducts the whole execution of the workflows. ECA rule
engines are distributed among the organizations because
each organization needs to have its own engine to execute
the local workflow. The execution status of the workflow
can be displayed to each organization through the user inter-
face. In this section, we mainly present how to create ECA
rules based on the graph-based interorganizational workflow
which is described in Sect. 3.1.

4.1 Blocks in the Workflow Process Model

Workflow specification can be understood from a number of
different perspectives. In this paper, we focus on the control-
flow (process) perspective because this is the essential per-
spective of the workflow specification [2]. It describes infor-
mation about tasks and the execution orders (dependencies
between tasks). This paper mainly deals with basic con-
structs of sequence, iteration, splits (AND, OR and XOR)
and joins (AND, OR and XOR). Based on general con-
structs, Gokkoca et al. [11] defines seven types of block,
namely, serial, and parallel, or parallel, xor parallel, con-
tingency, conditional and iterative blocks. By this means,
we can transform a graph-based workflow into the block-
based workflow. The transformation from graph-based
workflow to block-based workflow is similar to approaches
in previous researches [5], [10]. Take the local workflow of
the supplier in Fig. 1 for example, the graph-based workflow

1338
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.9 SEPTEMBER 2007

process can be transformed into following blocks: (1) and
parallel block: P1 = (basic function implementation & in-
terface implementation 1); P2 = (function implementation&
interface implementation 1); (2) iteration block: I1 = (Con-
dition(modified); phase report; system modification); (3) se-
rial block: S1 = (prototype implementation planning; P1;
initial report; implementation planning; P2; system inte-
gration; I1). From above transforming example, we can ob-
serve that the block detection always begins from the most
inner part of the workflow process. Moreover, blocks might
be mutually embedded. Therefore, the whole workflow pro-
cess can always be transformed to a single block with other
blocks embedded, e.g., the above local workflow is finally
turned into a serial block S1. We transform the graph-based
workflow process into block-based workflow process to use
the semantics of blocks to derive general ECA rules and au-
tomate the workflow execution.

4.2 Deriving ECA Rules from Blocks and External Events

Since our proposed workflow execution mechanism is
mainly based on state transitions of tasks, it is necessary
to define the transactions for the state transition diagram in
Fig. 3. Therefore we use following transaction primitives:
Enable, Begin, Commit, Suspend, Resume, Abort. Fur-
ther, we define the history base H in the ECA rule engine,
which is a finite set of transactions that have occurred during
workflow execution. Events in ECA rules include internal
events and external events. Internal events can be described
by transaction primitives. External events involve the op-
erations during task execution, including START and END
of the process instance, READY, DISPATCH, STOP, SUC-
CESS, FAIL to execute tasks. Therefore, ECA rules can be
divided into internal ECA rules and external ECA rules. By
using transaction primitives and history base, we describe
internal ECA rules according to the semantics of blocks in
workflow process. Similarly, we use semantics of external
events to derive external ECA rules. Internal rules can be ex-
ecuted inside the ECA rule engine without interaction with
task execution and monitor module, however, external rules
need to interact with the process agent to get the external
events. We list external ECA rules in Table 1 and internal
ECA rules for blocks in Table 2.

5. Process Agent in the Interorganizational Workflow
Model

In this paper, ECA rules are designed based on general con-
structs in graph-based workflow model, which can be ap-
plied in different workflow processes and adaptive to be spe-
cialized according to different process definitions. There-
fore, in an interorganizational workflow, rules can be used
in local workflow for all organizations. Moreover, gen-
eral ECA rules do not necessarily need modification even
when process definition is dynamically changed during ex-
ecution. It is also very convenient to modify rules in the
engine. However, to design general ECA rules for work-

flow process, workflow data and role model are not defined
in rules. Therefore, we use process agent to handle the ex-
ternal events control of each workflow process instance for
intra-execution. Process agent is also required to interact
with process agents of other organizations to provide inter-
execution. For a loosely coupled interorganizational work-
flow, process agents are suitable to provide a distributed
platform because agents are loosely coupled components
forming an open system.

The usage of process agents has advantages for interor-
ganizational workflow execution. Firstly, within each orga-
nization, process agent controls and monitors the execution
of tasks, which provides flexibility to the local workflow
execution. Process agent can dynamically control the ex-
ternal execution status of tasks according to the change of
environment. Process agent can also dispatch tasks to suit-
able execution roles according to the strategies. Secondly,
process agents facilitate cooperation among organizations,
which preserves the autonomy of organizations. In our ap-
proach, we use standard interaction protocols for interoper-
ability among organizations, which is essential for interor-
ganizational workflow. Therefore, organizations cooperate
with each other even if they have different process defini-
tion tools. By this means, local workflows can be executed
distributedly and autonomously.

5.1 Process Agent in Intra-Execution

Within an organization, process agent is in charge of con-
trolling workflow process instance. To achieve this goal,
process agent is required to interact with ECA rule engine by
external events to continue process state transition. More-
over, process agent needs to dispatch tasks that are ready for
execution and monitor tasks that are in execution. Process
agent for intra-execution of an organization includes follow-
ing actions.

(1) Start the workflow process instance when the orga-
nization is ready, create an external event S T ART (PI) and
send it to the ECA rule engine.

(2) Check the conditions of tasks that are enabled for
execution, create an external event READY(xi) if execution
condition of an enabled task is satisfied. READY(xi) is re-
quired for an enabled task to start.

(3) Dispatch tasks that are ready for execution (when
receiving the external event DIS PATCH(xi)) . Executors
of tasks might be pre-defined, negotiated or dynamically ad-
justed and discovered.

(4) Monitor task execution and receive execution event.
Since tasks are executed by executors (human, applications
or services), process agent needs to interact with execu-
tors or their execution agents to get detailed information
of task execution. Therefore, process agent can create ex-
ternal events of execution results such as S UCCES S (xi),
FAIL(xi) and S TOP(xi). Then, it sends the events to ECA
rule engine to trigger new events. Different execution results
need different actions. S UCCES S (xi) might trigger execu-
tion of succeeding task, FAIL(xi) might need some excep-

LIN et al.: INTERORGANIZATIONAL WORKFLOW EXECUTION BASED ON PROCESS AGENTS AND ECA RULES
1339

Table 1 External ECA rules.

Description of External Transitions
Event Semantic Description

External ECA Rules

S T ART (PI) Start of process instance enables the block that rep-
resents whole workflow process.

ER1 : on S T ART (PI) i f null do EnableB

READY(xi) Ready of an enabled task causes the start of task
execution; ready of a suspended task causes the re-
sume of that task.

ER2 : on Enablexi i f (READY(xi)) ∧ (Enablexi ∈ H) do Beginxi

ER3 : on S uspendxi i f (READY(xi))∧(S uspendxi ∈ H) do Resumexi

S TOP(xi) Stop of a running task makes it suspend. ER4 : on S TOP(xi) i f (Beginxi ∈ H) do S uspendxi

S UCCES S (xi) Success of executing a task makes it commit. ER5 : on S UCCES S (xi) i f (Beginxi ∈ H) do Commitxi

FAIL(xi) Failure of executing a task makes it abort. ER6 : on FAIL(xi) i f (Beginxi ∈ H) ∧ ¬(Commitxi ∈ H) do Abortxi

DIS PATCH(xi) The start or resume of a task makes it dispatched
for execution.

ER7 : on Beginxi i f (Beginxi ∈ H) do DIS PATCH(xi)
ER8 : on Resumexi i f (Resumexi ∈ H) do DIS PATCH(xi)

END(PI) Commit of the block that represents the whole
workflow process makes the end of the process in-
stance.

ER9 : on CommitB i f (CommitB ∈ H) do END(PI)

Table 2 Internal ECA rules for each block type.

Descriptions of Internal Transitions
Block Type Semantic Description

Internal ECA Rules

serial B = (x1; x2; . . . ; xn)
Tasks are executed consecutively. A task is
enabled when its prior task succeeds. Block
aborts if any task aborts.

IR1 : on EnableB i f (EnableB ∈ H) do Enablex1

IR2 : on Commitxi i f (Commitxi ∈ H) do Enablexi+1

IR3 : on Commitxn i f (Commitxn ∈ H) do CommitB

IR4 : on Abortxi i f (Abortxi ∈ H) do AbortB

and parallel B = (x1&x2& . . .&xn)
Tasks are executed concurrently. Block is
completed provided completion of all tasks.
Block fails if any task fails.

IR5 : on EnableB i f (EnableB ∈ H) do Enablexi

IR6 : on Commitxi i f ∀i(i ∈ n)(Commitxi ∈ H) do CommitB

IR4 : on Abortxi i f (Abortxi ∈ H) do AbortB

or parallel B = (x1 |x2 | . . . |xn)
Block succeeds if there exists one task that
succeeds in executing. Block fails if all tasks
abort.

IR5 : on EnableB i f (EnableB ∈ H) do Enablexi

IR7 : on Commitxi i f (Commitxi ∈ H) do CommitB

IR8 : on Abortxi i f ∀i(i ∈ n)(Abortxi ∈ H) do AbortB

xor parallel B = (x1 ||x2 || . . . ||xn)
If there is one task that completes, block suc-
ceeds and all the other tasks abort.

IR5 : on EnableB i f (EnableB ∈ H) do Enablexi

IR9 : on Commitxi i f (Commitxi ∈ H) do (CommitB) ∧ (∀ j(j � i)Abortx j)
IR8 : on Abortxi i f ∀i(i ∈ n)(Abortxi ∈ H) do AbortB

contingency B = (x1 , x2 , . . . , xn)
Each task has a priority. Task with highest
priority executes first. If fails, try the second
highest, the third... Block succeeds if any
task completes.

IR1 : on EnableB i f (EnableB ∈ H) do Enablex1

IR10 : on Abortxi i f (Abortxi ∈ H) do Enablexi+1

IR7 : on Commitxi i f (Commitxi ∈ H) do CommitB

IR11 : on Abortxn i f (Abortxn ∈ H) do AbortB

conditional B = ((C1, x1)|(C2, x2)| . . . |(Cn, xn)) All tasks
have conditions compared with or parallel
block. Only the task that satisfies the con-
dition executes.

IR12 : on EnableB i f (EnableB ∈ H) ∧Ci do Enablexi

IR13 : on Abortxi i f (Abortxi ∈ H) ∧Ci do AbortB

IR14 : on Commitxi i f (Commitxi ∈ H) ∧ Ci do CommitB

iterative B = (Condition(C); x1; x2; . . . ; xn)
The iterative condition gives a while loop be-
tween the start task and the end task on serial
block. The loop continues until the iterative
condition becomes false or any task aborts.

IR1 : on EnableB i f (EnableB ∈ H) do Enablex1

IR2 : on Commitxi i f (Commitxi ∈ H) do Enablexi+1

IR15 : on Commitxn i f (Commitxn ∈ H) ∧C do Enablex1

IR16 : on Commitxn i f (Commitxn ∈ H) ∧ ¬C do CommitB

IR4 : on Abortxi i f (Abortxi ∈ H) do AbortB

tion handling process, and if S TOP(xi) occurs, the execut-
ing task needs to wait to be resumed.

(5) End the workflow process instance if all the tasks
are successfully executed (when receiving the external event
END(PI)).

5.2 Agent Interaction Protocols for Inter-Execution

Interorganizational workflow environments can be modeled
as multiagent systems. Within each organization, agent re-
mains autonomy and heterogeneity. Across organizations
there are interactions, which can be regarded as agent in-
teraction problem. We use protocol to handle interactions
that take place during workflow execution. The protocols
involve all the organizations that have interaction with each

other to address specific purposes, e.g., sending and receiv-
ing software specification between organizations in an off-
shore software development environment.

To achieve flexibility among organizations, a process
agent is required not only to deal with basic interaction such
as sending or receiving results, but also to support coordi-
nation and negotiation between organizations if the results
need to be modified. Autonomous agents can negotiate with
each other to execute the allocated task flexibly and dynam-
ically [9]. In [8], several negotiation protocols are proposed
such as auction protocol, heuristic protocol, argumentation
protocol, contract net protocol and so on. As for the inter-
cultural software development issues, contract protocol is
most suitable since it deals with cooperative negotiation [3].
Figure 4 shows the examples.

1340
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.9 SEPTEMBER 2007

The actions of process agent interaction among orga-
nizations would affect intra-execution. Figure 5 shows sce-
narios of how process agent interaction (as shown in Fig. 4)
affects intra-execution. Simple agent interactions are execu-

Fig. 4 Example of agent interaction protocols: (a) simple interaction
protocol of “send” and “receive”; (b) interaction protocols with
coordination and negotiation between process agents.

Fig. 5 Scenarios of intra-execution effects by process agent interaction
in inter-execution.

Table 3 Interorganizational workflow execution example (the case of Supplier in Fig. 1).

Block Active Task Event ECA Rule Action of Process Agent

0 – – – – Confirm receiving specification from process agent of
the Outsourcer.

1 – – – – Start process instance and send external event
S T ART(PI) to ECA rule engine.

2 – – S T ART (PI) ER1 –
3 S1 – EnableS 1 IR1 –
4 S1 x1: prototype imple-

mentation planning
Enablex1 ER2 Check if the task is ready for execution. Create

READY(x1) if condition is satisfied.
5 S1 x1 Beginx1 ER7 –
6 S1 x1 DIS PATCH(x1) – Dispatch task for execution.
7 S1 x1 – – Monitor the task execution and send external event

S UCCES S (x1) to ECA rule engine if the task is suc-
cessfully executed.

8 S1 x1 S UCCES S (x1) ER5 –
9 S1 x1 Commit(x1) IR2 –

10 S1 x2: P1 (regarded as a
”task” in S1)

Enable(x2) IR5 –

11 P1 x21: basic function im-
plementation,
x22: interface imple-
mentation 1

Enablex21

Enablex22

ER2 Check if the parallel tasks are ready for execution.
Create READY(x21) and READY(x21) if execution
conditions are satisfied.

12

tion conditions for certain tasks and the interaction actions
trigger ECA rules in intra-execution. However, interaction
with negotiation will cause internal state changes of cer-
tain tasks and therefore workflow adaptation should be con-
ducted by process agent for further negotiation process. For
example, in protocol (b) in Fig. 4, when the Outsourcer pro-
cess agent sends requestRevise(), the Supplier process agent
would change its local workflow to repeat executing current
task with updated conditions. In some cases, a part of work-
flow process might be changed in the process of negotiation
according to the strategies of process agents.

6. Case Study and Discussion

We study the case of offshore software development to ex-
plain the proposed approach. First, a graph-based interor-
ganizational workflow model is created as shown in Fig. 1.
Next, the graph-base workflow of each organization is auto-
matically transformed into the block-based workflow. Then,
the block-based local workflows of all the organizations are
executed distributedly. The local workflows interact with
each other at certain points by process agent interaction pro-
tocols. Table 3 shows part of workflow execution steps of
the Supplier in the example of Fig. 1. As is presented in
Sect. 4.1, the block-based workflow contains four blocks:
S 1, P1, P2 and I1, among which S 1 is the main stream. In the
table, every step shows the current active block and tasks,
current event, the ECA rule that the event would trigger, and
the action of process agent. The event history stores all the
executed events. Process agent of the local workflow pro-
cess instance interacts with process agent from other orga-
nizations when there is an interaction point. By the control
of ECA rule engine and process agent, the whole interorga-
nizational workflow can be distributed for execution among
organizations. Further, we explain the inter-execution by

LIN et al.: INTERORGANIZATIONAL WORKFLOW EXECUTION BASED ON PROCESS AGENTS AND ECA RULES
1341

the process agent interaction of send initial report in Fig. 4.
The whole process is as follows. With coordination or ne-
gotiation, the whole interorganizational workflow execution
becomes flexible.

(1) When process agent of the Supplier PAS knows
commitment of the task initial report by the ECA rule en-
gine, it sends initial report to process agent of the Outsourcer
PAO.

(2) PAO receives initial report from PAS and replies to
PAS according to the received initial report. If the received
report is OK, PAO will send a confirmation to PAS . Other-
wise, it will send a revise request or explanation request to
PAS with requirement.

(3) If PAS receives a confirmation, the READY condi-
tion of its next task implementation planning will be satis-
fied and a new rule will be triggered. The interaction steps
end.

(4) If PAS receives a revise or explanation request from
PAO, it will adjust the local workflow process and intra-
execution state. The specification and state of task initial
report will be changed for re-execution according to the re-
ceived request.

(5) Repeat from step (1).

In our approach, we design ECA rules based on general
definition of blocks to provide an adaptable and modular ap-
proach to achieving workflow execution. The general ECA
rules can be adopted in different workflows because they are
based on blocks. Further, in order to control and monitor
the whole workflow execution process more flexibly, we in-
troduce agent technology into our mechanism. We use pro-
cess agent to control the execution of each task in a local
workflow. Though the task dispatch mechanism is not the
focus of this paper, process agent can provide flexibility in
dealing with dynamic changes and exceptions. We also use
agent interaction protocols to deal with the interactions be-
tween different organizations so that organizations can not
only send basic message to each other, but also manage to
coordinate and negotiate with each other. As a result, the
whole mechanism can provide the execution of interorga-
nizational workflow automation, flexibility, and adaptation.
Moreover, our approach supports distributed execution of
local workflows of different organizations, which provides
autonomy of organizations.

Despite the effectiveness, there are some limitations
in the proposed approach. Although ECA rules designed
in this paper can be generally used, the assumption is that
workflow model is graph-based. When designing the inter-
nal ECA rules, we only deal with basic types of blocks. How
to extend the proposed approach to other types of workflow
models and workflow model with more complicated struc-
ture might be interesting issues in future research. More-
over, although the agent-based approach provides autonomy
and flexibility, there are still open issues that we have to deal
with in future work. For example, when process agents are
conducting coordination, some criteria like workflow sound-
ness and optimal modification must be considered for local

workflow adaptation.

7. Conclusion

Interorganizational workflow has been becoming more and
more important in the global economic environment. How-
ever, there are several major challenges in the interorgani-
zational workflow execution problem, including flexibility,
adaptation and distribution. These issues are rarely covered
together in previous research. In this paper, we propose a
new framework for the interorganizational workflow execu-
tion based on process agents and ECA rules to address above
issues.

To design the execution mechanism of interorganiza-
tional workflow, we divide the whole workflow execution
into two parts: the intra-execution and the inter-execution.
We design execution mechanisms for the two parts to
achieve the goal. In this approach, the whole interorgani-
zational workflow is modeled as a multiagent system with a
process agent in each organization. Therefore, local work-
flows of organizations are distributed for execution and in-
teraction with each other at certain points. For each local
workflow, a method of transforming the graph-based work-
flow model into block-based workflow model is applied to
derive general ECA rules from blocks. We further design
ECA rules to control internal state transition and use process
agent to control the external state transition of tasks in the
local workflow process. Workflow execution across organi-
zations is achieved by process agent interaction protocols.

The proposed approach can provide automatic exe-
cution of interorganizational workflow with flexibility and
adaptation. It can also provide autonomy for local work-
flows. A case study of offshore software development is
provided to demonstrate the effectiveness of our approach.
Our future work will be the implementation and evaluation
of the proposed approach based on process agents and ECA
rules.

Acknowledgments

This research was partially supported by a Grant-in-Aid for
Scientific Research (A) (18200009, 2006–2008) from Japan
Society for the Promotion of Science (JSPS). The authors
wish to thank Dr. Ahlem BEN HASSINE at National In-
stitute of Information and Communications Technology for
her discussion and advice on this paper.

References

[1] W.M.P. van der Aalst, “Process-oriented architectures for electronic
commerce and interorganizational workflow,” Information Systems,
vol.24, no.8, pp.639–671, Dec. 1999.

[2] W.M.P. van der Aalst and M. Weskez, “Advanced topics in workflow
management: Issues, requirements, and solutions,” J. Integrated De-
sign and Process Science, vol.7, no.3, pp.49–77, 2003.

[3] E. Andonoff and L. Bouzguenda, “Agent-based negotiation be-
tween partners in loose inter-organizational workflow,” Proc.
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, pp.619–625, IEEE Computer Society, Washington, DC,

1342
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.9 SEPTEMBER 2007

2005.
[4] J. Bae, H. Bae, S. Kang, and Y. Kim, “Automatic control of work-

flow processes using ECA rules,” IEEE Trans. Knowl. Data Eng.,
vol.16, no.8, pp.1010–1023, Aug. 2004.

[5] F. Castai, S. Castano, M. Fugini, I. Mirbel, and B. Pernici, “Us-
ing patterns to design rules in workflows,” IEEE Trans. Softw. Eng.,
vol.26, no.8, pp.760–765, Aug. 2000.

[6] F. Casati, M. Fugini, and I. Mirbel, “An environment for design-
ing exceptions in workflows,” Information Systems, vol.24, no.3,
pp.255–273, May 1999.

[7] M. Divitini, C. Hanachi, and C. Sibertin-Blanc, “Inter-organizational
workflows for enterprise coordination,” in Coordination of Internet
Agents, ed. A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf,
pp.46–77, Springer-Verlarg, 2001.

[8] N. Jenning, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M.
Wooldridge, “Automated negotiation: Prospects, methods and chal-
lenges,” Int. Journal on Group Decision and Negotiation, vol.10,
no.2, pp.199–215, 2001.

[9] Y. Jiang and J. Jiang, “A multi-agent coordination model for the vari-
ation of underlying network topology,” Expert Systems with Appli-
cations, vol.2, no.29, pp.372–382, 2005.

[10] J. Mendling, K. Lassen, and U. Zund, “Transformation strategies
between block-oriented and graph-oriented process modeling lan-
guages,” Technical Report, JM-200510-10, WU Vienna, Oct. 2005.

[11] E. Gokkoca, M. Altinel, I. Cingil, E.N. Tatbul, P. Koksal, and A.
Dogac, “Design and implementation of a distributed workflow en-
actment service,” Proc. International Conference on Cooperative In-
formation Systems (CoopIS), pp.89–98, 1997.

[12] M.P. Singh and M.N. Huhns, “Multiagent systems for workflow,”
International Journal of Intelligent Systems in Accounting, Finance
and Management, vol.8, pp.105–117, 1999.

[13] WfMC, Workflow Management Coalition Terminology and Glos-
sary (WFMC-TC-1011), Technical Report, Workflow Management
Coalition, Brussels, 1996.

Donghui Lin received his ME degree in
computer science and engineering at Shanghai
Jiao Tong University, China in 2005. He is cur-
rently a PhD candidate in social informatics at
Kyoto University, Japan. His research interests
include multiagent systems, workflow manage-
ment technologies, organization theory and in-
tercultural collaboration.

Huanye Sheng is a professor of computer
science and engineering at Shanghai Jiao Tong
University, China. His research interests include
intelligent human-computer interface, informa-
tion economics, modern logistics management
and natural language processing.

Toru Ishida is a professor of social infor-
matics at Kyoto University, a leader of National
Institute of Information and Communications
Technology Language Grid project, and a guest
professor at Shanghai Jiao Tong University. His
research interests include autonomous agent and
multiagent systems, semantic Web service and
intercultural collaboration.

